ONYCHIUM

Bollettino del Gruppo Entomologico Toscano

4

Firenze, 2004

ONYCHIUM

Notiziario del Gruppo Entomologico Toscano

COMITATO DI REDAZIONE

Piero ABBAZZI, Arnaldo BORDONI, Mauro GORI Alessandro MASCAGNI, Saverio ROCCHI e Fabio TERZANI

SEGRETARIA DI REDAZIONE

Sarah WHITMAN, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana, 17, I-5.0125, Firenze, Tel. 055 2288254, email sarah@unifi.it

QUOTA ASSOCIATIVA 2005

Soci sostenitori $50 €$, soci ordinari $15 €$, Soci studenti $7 €$. Le quote dovranno essere versate nel primo trimestre di ciascun anno. Se pagate successivamente le quote aumenteranno del 50% (rispettivamente $22,50 \epsilon$ e $10,50 \epsilon$). Il Notiziario sarà distribuito a tutti i soci in regola con il pagamento della quota associativa.
Sul notiziario potranno pubblicare i soci del GET (Gruppo Entomologico Toscano) e i non soci. Ai non soci viene chiesto il pagamento di tutte le spese di pubblicazione. Ai soci verrà chiesto un contributo a pagina oltre le prime otto pagine di pubblicazione. I soci non in regola con il pagamento delle quote sociali vengono equiparati ai non soci. Il costo degti estratti è interamente a carico degli Autori.
II costo indicativo degil estratti (escluso spese di spedizione) è indicato nella tabella sottostante:

Pagine	20 copie $(€)$	50 copie $(€)$	100 copie (ϵ)
$1-6$	6	15	30
$7-12$	8	20	40
$13-18$	10	25	50

NORME REDAZIONALI

I lavori non devono superare di norma le lo cartelle datti lo scritte a interlinea 2. Articoli più lunghi verranno accettati a discrezione del Comitato di Redazione. Si accettano anche note brevi, segnalazioni faunistiche, recensioni, riflessioni, biografie. L'articolo deve essere originale e non inviato ad altre riviste. I lavori devono essere scritti in italiano o inglese. Se scritti in italiano i lavori dovranno essere preceduti da un riassunto e dalla traduzione del titolo e un abstract in inglese, se scritti in inglese saranno invece preceduti da un abstract e da una traduzione del titolo e un riassunto in italiano. Successivamente deve essere posta l'indicazione di alcune parole chiave in inglese (key words) che possano servire a codificare l'articolo.
It testo deve essere redatto in Microsoft Word, con figure e tabelle a parte. Normalmente sono accettate solo figure, fotografie e disegni in bianco e nero. Le figure a colori potranno essere pubblicate, ma interamente a spese dell'autore. Le figure dovranno essere numerate e le didascalie scritte a parte. Le pagine devono essere numerate. L'autore/i deve precedere it titolo. L'indirizzo, con l'eventuale istituzione di appartenenza, va posto in fondo al lavoro. Nel caso di trattazione di entità sistematiche dopo il titolo dovrà essere riportato un sottotitolo fra parentesi con ordine e famiglia.

Fabio Terzani

ODONATI DEL MOLISE (ITALIA MERIDIONALE): NUOVI DATI (Odonata)

Abstract

Riassunto. Sono elencate dodici specie raccolte in Molise (Italia meridionale). In particolare quattro specie risultano nuove per la regione (Pyrrhosoma nymphula (Sulzer, 1776), Cordulegaster trinacriae, Waterston, 1976, Libellula depressa, Linneo, 1758, Orthetrum cancellatum (Fonscolombe, 1837)].

Abstract

Dragonflies from Molise (Southern Italy): new data (Odonata). Twelve species collected in Molise are listed, four of which are new for the region [Pyrrhosoma nymphula (Sulzer, 1776), Cordulegaster trinacriae, Waterston, 1976, Libellula depressa, Linneo, 1758 and Orthetrum cancellatum (Fonscolombe, 1837)].

Key words. Odonatofauna, Molise.

Introduzione

Le conoscenze odonatologiche del Molise sono riassunte in D'Antonio (1994), che elenca in tutto 27 specie, 13 delle quali note in precedenza. Data pertanto la scarsezza delle conoscenze odonatologiche per questa regione ritengo opportuno fornire l'elenco delle specie raccolte nel corso di alcune ricerche che ho svolto insieme ad altri membri del Gruppo Entomologico Toscano (Saverio Rocchi e Mauro Gori).

Materiali e metodi

Tutti i dati inerenti la raccolta sono riportati negli elenchi sottostanti: nel primo sono riportate le abbreviazioni di località e le corrispettive date di raccolta, nel secondo le specie raccolte, suddivise per famiglie e generi, il numero degli esemplari maschi e femmine e il numero di collezione dell'Autore ($=\mathrm{CT}$). Le stazioni di raccolta sono rappresentate in Fig. 1. Ulteriori notizie sulle caratteristiche ambientali delle stazioni di raccolta sono riportate in Rocchi \& TERZANI (in stampa). Le specie nuove per il Molise sono contrassegnate da un asterisco e quelle che presentano qualche interesse sono commentate successivamente.

Stazione, sigla, località \& data

1-V1, T. Vandra, m 600, Roccasicura (IS), 30.6.2003; 2-V2, T. Vandra, m 420, Ponte di Vandra, Vandra (IS), 30.6.2003; 3-Me, Pozza lungo SS 16 presso foce del t. Mergola, Petacciato (CB), 1.7.2003; 4-T1, F. Trigno, m 240, Trivento (IS), 1.7.2003; 5-T2, F. Trigno, m 1000, Ponte S. Mauro (Castiglione), Carovilli (IS), 1.7.2003; 6-Cr, F. Carpino, m 520 , Carpinone (IS), 1.7.2003; 7-Ca, T. Callora e roggia, m 540, S.Massimo (CB), 2.7.2003; 8-R, T. Rio, m 540, Cantalupo nel Sannio (IS), 2.7.2003; 9-Mo, Rio Molinello, m 450, Scapoli (IS), 3.7.2003.

Fig．1．Carta del Molise（scala $1: 1.000 .000$ ）con le stazioni di raccolta．La linea tratteggiata indica l＇areale accertato di presenza di Calopteryx v．virgo（Linneo，1758）．Il triangolo vuoto è una stazione desunta dalla bibliografia（D＇Antonio，1994） corrispondente a f．Tammaro，m 450，Sepino（CB）．

Famiglia，genere e specie，sigla，

 n° di esemplari ${ }^{\circ}{ }^{\circ}$ e
Calopterygidae

Calopteryx v．virgo（Linneo，1758）：V1， 9 ơ 5 욱，CT 3366；V2， 1 ふ，CT 3372；T2， 8
 3388.
 12 ठ＇$^{\circ} 7$ 우，CT 3391，3391a．
Calopteryx h．haemorrhoidalis（Van der Linden，1825）：V1， 2 す̃o 1 个，CT 3368；V2， 1

Platyonemididae

Platycnemis pennipes（Pallas，1771）：V1， 2 ôo 1 오（un tandem），CT 3369，3369a；V2， 1 ô 1 of（un tandem），CT 3375；T2， 1 ô，CT 3380；Ca， 1 q，CT 3387；Mo， 1 ô，CT 3392.

Coenagrionidae
＊Pyrrhosoma nymphula（Sulzer，1776）：T2， 3 ठ才 1 iq（un tandem），CT 3382，3382a．
Coenagrion mercuriale castellani Roberts，1948：T2， 1 §，CT 3381.

Aeshnidae

Anax imperator Leach，1815：T2， 1 §，CT 3383.

Gomphidae

Onychogomphus forcipatus unguiculatus（Van der＇iinden，1820）：V1， 2 ઠิだ，CT 3370；
 1 ㅇ，CT 3393，3393a．

Cordulegasteridae

 esuvia ㅇ，CT 3389，3389a，3389b．

Libellulidae

＊Libellula depressa Linneo，1758：Mo， 2 와，CT 3394.
＊Orthetrum cancellatum（Linneo，1758）：Me， 1 ठ̊，CT 3377.

Discussione

Su dodici specie raccolte，quattro risultano nuove per il Molise，ossia il 33，3\％ （Pyrrhosoma nymphula，Cordulegaster trinacriae，Libellula depressa，Orthetrum cancellatum）．Pertanto le specie note per questa regione assommano con il presente contributo a 31．Tra quelle raccolte alcune meritano un commento．

Calopteryx v．virgo：questa specie，raccolta già da D＇Antonio（1994）in un numero esiguo di esemplari，appare in realtà piuttosto diffusa e abbondante（Fig．1）e il suo interesse deriva dal fatto di essere isolata rispetto alle popolazioni dell＇Italia settentrionale così da poter considerare la sua presenza come un relitto dell＇ultima glaciazione．Le misurazioni
 36，9－41，5（media 39，8；deviazione standard $\pm 1,1$ ）；ala posteriore 30，6－33，2（media 31，7；deviazione standard $\pm 0,7$ ）；웅：addome 36，9－40，8（media 39，3；deviazione standard $\pm 1,0$ ）；ala posteriore $32,8-36,8$（media 34,9 ；deviazione standard $\pm 1,1$ ）． Questi dati sono in sostanziale accordo con le misure riportate da MAIBACH（1987）e con le misurazioni da me effettuate su una popolazione proveniente da Plitvice（Croazia），ma risultano superiori a quelle riportate da diversi autori europei（May，1933；CONCI \＆ Nielsen，1956；Aguesse，1968；Hammond，1977；Pecile，1984）．

Coenagrion mercuriale castellani（Fig．2）：D＇Antonio（l．c．）la indica semplicemente come mercuriale，ma tutte le popolazioni dell＇Italia peninsulare sono attualmente attribuite alla ssp．castellani，anche se il suo status deve essere ancora definito con precisione，non potendosi del tutto escludere un＇attribuzione a rango specifico．

Fig. 2. Appendici anali di Coenagrion mercuriale castellani ${ }^{3}$: a, vista dorsale; b, vista laterale $s x$.

Coenagrion mercuriale castellani (Fig. 2): D'Antonio (1. c.) la indica semplicemente come mercuriale, ma tutte le popolazioni dell'Italia peninsulare sono attualmente attribuite alla ssp. castellani, anche se il suo status deve essere ancora definito con precisione, non potendosi del tutto escludere un'attribuzione a rango specifico.

Fig. 3. Disegni del sintorace in alcuni $\delta \delta(a-f)$ e in una \circ (g) di Onychogomphus forcipatus unguiculatus in vista laterale $s x$ (a-b: V1; c: V2; d-g: Mo).

Onychogomphus forcipatus unguiculatus: la variabilità delle fasce del disegno toracico di questa specie è nota per gli esemplari appartenenti alla ssp. nominale dell'Europa settentrionale che risultano più scuri di quelli meridionali (ASKEw, 1988), tuttavia negli esemplari maschi meridionali sono presenti variazioni anche consistenti a carico di tutte le fasce (Fig. 3a-f). Nell'unica femmina raccolta le fasce risultano poi particolarmente ridotte (Fig. 3g).

Fig 4. Appendici anali di Cordulegaster trinacriae δ^{*} : a, vista ventrale; b, vista dorsale; c, vista laterale $s x$.

Cordulegaster trinacriae (Fig. 4): gli esemplari raccolti sono sicuramente tutt! appartenenti a questa specie, pertanto l'attribuzione alla specie C. b. boltonii degli esemplari raccolti da D'ANTONIO $(1987,1994)$ comporta la presenza in questa regione di entrambe le specie. La stazione sul t . Vandra, a m 600 , rappresenta la più settentrionale
nota per trinacriae, sia pure di pochi chilometri rispetto a quella di Genzano (Lazio) (Minnitt, 1972; Galletti \& Pavesi, 1985).

Fig. 5. Teratologia del margine distale inferiore dell'ala posteriore dx in Orthetrum brunneum 아.

Orthetrum brunneum: I'unica femmina raccolta presenta una teratologia alare (Fig. 5) consistente in un anomalo andamento ondulato del margine distale inferiore dell'ala posteriore destra accompagnato da un notevole ispessimento del margine stesso e delle cellule alari immediatamente soprastanti.

Ringraziamenti

Ringrazio il dr. Roberto Poggi del Museo Civico di Storia Naturale "G. Doria" di Genova per avermi fornito materiale di confronto.

Bibliografia

Aguesse P., 1968. Les Odonates de l'Europe Occidentale, du Nord de l'Afrique et des Iles Atlantiques. Faune de l'Europe et du Bassin Méditerranéen, 4. Ed. Masson, Paris, pp. 258.

Askew R. R., 1988. The Dragonflies of Europe. Harley Books, Colchester.
Conci C. \& Nielsen C., 1956. Odonata. Fauna d' Italia. 1. Ed. Calderini, Bologna, pp. X + 298.

D'Antonio C., 1987. Cordulegaster boltoni boltoni, p. 124. In: Segnalazioni Faunistiche Italiane. 108. Bollettino della Società entomologica italiana, 125 (2): 123-128.
D'Antonio C., 1994. Primi dati sugli Odonati del Molise (Odonata). Bollettino della Società entomologica italiana, 125 (3)(1993): 187-190.
Galletti P. A. \& Pavesi M., 1985. Ulteriori considerazioni sui Cordulegaster italiani. Giornale italiano di Entomologia, 2: 307-326.
Hammond C. O., 1977. The Dragonflies of Great Britain and Ireland. Curwen Press, London, pp. 115.

MAIBACH A., 1987. Révision systematique du genre Calopteryx Leach pour I'Europe Occidentale (Zygoptera: Calopterygidae). 3. Révision systématique, étude bibliographique, désignation des types et clé de détermination. Odonatologica, 16 (2): 145-174.
Minniti M., 1972. Subspeciazione, Geonemia ed Ecologia di Cordulegaster annulatus (Latr. 1805) (Odonata). Atti del 9° Congresso Nazionale Italiana di Entomologia: 3955.

MAY, E., 1933. Libellen oder Wasserjungfern (Odonata). Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise. 27. Fischer Ed., Jena, pp. 124.
Pecile I., 1984. Libellule. Ed. C. Lorenzini, Udine, pp. 133.
ROCCHI S. \& TERZANI F. (in stampa). Contributo alla conoscenza della coleotterofauna acquatica e semiacquatica del Molise (Italia meridionale). Bollettino della Società entomologica italiana.

Indirizzo dell'Autore: Fabio Terzani, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze
e-mail tterza@tin.it

Saverio Rocchi

IL GENERE HYDROCHUS LEACH, 1817 IN ITALIA E ANNOTAZIONI RIGUARDANTI PRINCIPALMENTE ALCUNE SPECIE DELLA TOSCANA

(Coleoptera Hydrochidae)

Abstract

Riassunto. Viene fornita la distribuzione regionale in Italia dell: specie del genere Hydrochus Leach, 1817; tutte sono presenti anche in Toscana. Hydrochus angustatus Germar, 1824 è segnalato per la prima volta di Lombardia, Veneto, Marche, Umbria, Abruzzo, Campania e Calabria, H. nitidicollis Mulsant, 1844 di Romagna, Marche e Umbria. Viene proposta una chiave per l'identificazione delle specie italiane, con le figure degli edeagi di H. angustatus Germar, 1824, H. flavipennis Küster, 1852, H. grandicollis Kiesenwetter, 1870 e H. nitidicollis Mulsant, 1844.

Abstract

The genus Hydrochus Leach, 1817 in Italy with annotations mainly regarding some species in Tuscany (Coleoptera, Hydrochidae). The regional distribution in Italy of the species, all present also in Tuscany, of the genus Hydrochus Leach, 1817 is reported. Hydrochus angustatus Germar, 1824 is recorded for the first time from Lombardy, Venetia, Marche, Umbria, Abruzzo, Campania and Calabria, H. nitidicollis Mulsant, 1844 from Romagna, Marche and Umbria. A key to the italian species is provided, with the figures of the aedeagi of H . angustatus Germar, 1824, H . flavipennis Küster, 1852, H. grandicollis Kiesenwetter, 1870 and H. nitidicollis Mulsant, 1844.

Key words. Italy, Hydrochus, distribution, new records, key.

Introduzione

Gli Hydrophiloidea s. I., un tempo chiamati anche Palpicorni per la caratteristica (in molti generi) dei palpi mascellari più lunghi delle antenne, comprendono varie famiglie, fra le quali quella degli Hydrochidae, costituita dal solo genere Hydrochus Leach, 1817 (HANSEN, 1999) con quasi 170 taxa (fra specie e sottospecie) a livello mondiale, di cui circa il 15% nella regione paleartica.

In Italia il suddetto genere annovera sette specie, tutte presenti anche in Toscana; seguendo la nomenclatura di HANSEN, 1999 esse sono: angustatus Germar, 1824; brevis (Herbst, 1793); crenatus (Fabricius, 1792); elongatus (Schaller, 1783); flavipennis Küster, 1852; grandicollis Kiesenwetter, 1870; nitidicollis Mulsant, 1844; sono specie che frequentano le acque dolci, soprattutto lentiche, come stagni, pozze, acquitrini, fossi, ma anche i corsi d'acqua, però soltanto ai margini dove la corrente è scarsa o quasi inesistente; due specie (brevis e elongatus) mostrano una notevole preferenza per gli ambienti tipicamente palustri; le specie più comuni sono crenatus e flavipennis.

Per la determinazione delle specie italiane esistono le tabelle di Chiesa (1959) e Pirisinu (1981), entrambe basate soltanto sui caratteri esoscheletrici; tabelle corredate anche delle figure degli edeagi sono quelle di Angus (1976) e di Hebauer \& Klausnitzer (1998), ma entrambe non comprendono la specie grandicollis.

La classificazione basata soltanto sui caratteri esoscheletrici non presenta grosse difficoltà per brevis, crenatus, elongatus e neppure per le coppie angustatus-flavipennis e grandicollis-nitidicollis; le difficoltà emergono invece per separare fra di loro le specie di ciascuna delle suddette coppie: i caratteri esterni, infatti, non sono così ben differenziati e costanti da consentire una determinazione sicura, tanto che, senza il ricorso all'esame dell'edeago, si può facilmente incorrere nell'errore di confondere una specie con l'altra.

Questa situazione è stata da me constatata dopo che ho avuto l'opportunità di far controllare al Dott. Franz, Hebauer di Grafling (Germania) alcuni esemplari della mia collezione. Dal suddetto controllo scaturisce la necessità di dover rettificare alcune segnalazioni riportate in precedenti lavori e precisamente:

- le seguenti segnalazioni per la Toscana di angustatus contenute in Rocchi et al. (2002): Bientina (staz. VIN 4), Padule di Fucecchio (staz. VIN 12), Campi Bisenzio, laghetti di Focognano (staz. VME 10), il Ferrone, borro Calosina (staz. VME 18), Signa, i Renai (staz. VME 73), lago dell'Accesa (staz. CEB 4), Montaperti (staz. OMB 18), lago di Montepulciano (staz. VCH 4), debbono essere riferite a flavipennis;
- le seguenti segnalazioni per la Toscana di grandicollis contenute in Rocchi et al. (2002): Lungagnana, torr. Pesciola (staz. VIN 23), Capannuccia, torr. Ema (staz. VME 13), il Ferrone, borro Calosina (staz. VME 18), il Ferrone, f. Greve (staz. VME 19), Ponte a Ema, torr. Ema (staz. VME 47), San Vincenzo a Torri, f. Pesa (staz. VME 61), Sieci, borro delle Sieci (staz. VME 72), Tavarnelle Val di Pesa (staz. VME 75), Ansina, torr. Nestore (staz. VTI 5), Ponte Singerna, torr. Singerna (staz. VTI 10), Ripoli, torr. Padonchia (staz. VTI 11), lago dell'Accesa (staz. CEB 4), Seggiano, torr. Vivo (staz. OMB 33), debbono essere riferite a nitidicollis;
- la segnalazione per l'Umbria (Carpini, torr. Carpina-PG) di grandicollis contenuta in ROCCHI (2002) deve essere riferita a nitidicollis.

Non è pertanto da escludere, come già accennato anche in Rocchi \& Terzani (in stampa), che in letteratura possa esistere qualche altra segnalazione errata, derivante da chi come me può essere incorso nell'errore di aver confuso angustatus con flavipennis e grandicollis con nitidicollis; la distribuzione in Italia di queste quattro specie potrebbe pertanto necessitare, in alcuni casi, di verifica.

Qui di seguito viene riportata la distribuzione attualmente nota delle sette specie di Hydrochus nelle varie regioni italiane, seppure con qualche riserva per i motivi sopra indicati; se esistente, come fonte bibliografica principale, si fa riferimento a CHIESA (1959), evitando così la ripetizione di citazioni che nulla aggiungerebbero alla suddetta distribuzione; abbreviazioni: ACM (collezione Aldo Chiesa, conservata nel Museo Civico di Storia Naturale di Milariu), CSR (collezione dell'autore), FER (Giorgio Ferro in litteris);

- angustatus: Piemonte ?, Liguria ?, Puglia, Sicilia, Sardegna (LUIGIONI, 1929), Toscana (Gagliardi, 1941), Emilia Romagna (Chiesa, 1959), Basilicata (ANGELINi, 1973); si aggiungono le nuove segnalazioni per Lombardia: Castel Verzago-BS, Barlassina-MI, Mombello-MI, Sermide-MN (ACM); Veneto: Portogruaro-VE, Fimon-VI (ACM), Onigo, torr. Curogna-TV, Mestre-VE (FER); Marche: Monte Conero-AN, Gradara-PS (ACM); Umbria: Castelluccio nei Monti Sibillini-PG (ACM); Abruzzo: Rivisondoli-AQ (ACM); Campania: Calvi Risorta, rio dei Lanzi-CE (ACM); Calabria: Sibari-CS (ACM);
- brevis: Piemonte, Veneto, Trentino-Aito Adige, Friuli-Venezia Giulia, Emilia-Romagna, Toscana (CHIESA, 1959), Lombardia (BINAGHI, 1960), Lazio (PIRISINU, 1981);
- crenatus: Veneto (Bertolini, 1872), Piemonte, Lombardia, Trentino-Alto Adige, EmiliaRomagna, Toscana, Sardegna (CHIESA, 1959), Umbria ? (TATICCHI, 1968), Lazio (Rocchi, 2002);
- elongatus: Piemonte, Friuli-Venezia Giulia (Porta, 1929), Veneto, Trentino-Alto Adige, Emilia-Romagna, Liguria, Toscana, Abruzzo, Lazio, Sardegna (CHIESA, 1959), Lombardia (BILARDO, 1965);
- flavipennis: Piemonte ?, Liguria (PORTA, 1929), Veneto, Friuli-Venezia Giulia, EmiliaRomagna, Toscana, Marche, Umbria, Lazio, Puglia, Campania, Sicilia, Sardegna (Chiesa, 1959), Lombardia (Bilardo, 1965), Basilicata (ANGeLINi, 1973), Calabria (Angelini \& Ferro, 1974), Molise (Rocchi \& TerZani, in stampa);
- grandicollis: Veneto, Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-Romagna, Liguria, Toscana, Lazio, Sicilia, Sardegna (CHIESA, 1959), Marche (Pirisinu, 1972), Basilicata (Ferro, 1974), Calabria (Angelini \& Ferro, 1974), Piemonte (Rocchi, 2002), Molise (ROCCHI \& TERZANI, in stampa);
- nitidicollis: Liguria, Lazio ? (Porta, 1929), Piemonte, Sicilia, Sardegna (Chiesa, 1959), Friuli-Venezia Giulia ? (MARCuzzi \& Lorenzoni, 1970), Toscana (MASCAGNI \& Calamandrei, 1996), Molise (Rocchi \& Terzani, in stampa); si aggiungono le nuove segnalazioni per la Romagna: Castel dell'Alpe, f. Rabbi-FO (CSR); Marche: Borgo Pace, torr. Auro e torr. Meta-PS (CSR); Umbria: Carpini, torr. Carpina-PG (CSR, erroneamente citato come grandicollis in ROCCHI, 2002).

Per cercare di agevolare il riconoscimento delle specie italiane del genere Hydrochus viene redatta la tabella dicotomica sotto riportata, comprendente anche il riferimento alle figure (tratte da ANGUS, 1976 e RIBERA et al., 1999) degli edeagi di angustatus, flavipennis, grandicollis e nitidicollis; questa tabella tiene conto di caratteri direttamente controllati su materiale della mia collezione ed è stata sviluppata anche mediante la parziale modifica e conseguente rielaborazione di quelle di CHIESA (1959), ANGUS (1976), Pirisinu (1981) e Hebauer \& Klausnitzer (1998):

(figg. 1-2 da ANGUS, 1976; figg. 3-4 da Ribera et al., 1999).

1 Carene longitudinali delle elitre particolarmente robuste ed evidenti, non continue per tutta la loro lunghezza, distintamente interrotte: alcune carene presentano interruzioni nella metà basale, altre in quella apicale. Specie mediamente più grande (lunghezza $3,0-4,7 \mathrm{~mm}$)
elongatus

- Carene longitudinali delle elitre (eccetto in brevis e crenatus), nettamente meno robuste, pressoché continue per tutta la loro lunghezza e comunque senza interruzioni particolarmente evidenti. Specie mediamente più piccole (lunghezza 2,0-4,0 mm) 2
2 Su ciascuna elitra sono presenti quattro carene longitudinali, non molto rilevate ma chiaramente distinguibili 3
- Su ciascuna elitra sono appena distinguibili soltanto le due modestissime carene longitudinali esterne 4
3 Specie snella, allungata, mediamente più piccola (lunghezza $2,0-3,1 \mathrm{~mm}$). Elitre due volte più lunghe che larghe, subparallele. Margine anteriore del pronoto stretto, un po' più stretto della distanza esistente fra le prominenze esterne degli occhi crenatus
- Specie tozza, mediamente più grande (lunghezza 2,6-3,7 mm). Elitre circa una volta e mezzo più lunghe che larghe, subovali, con la metà apicale allargata. Margine anteriore del pronoto un po' più largo, leggermente più largo della distanza esistente fra le prominenze esterne degli occhi
brevis
4 Specie strette e allungate, mediamente più grandi (lunghezza 2,3-4,0 mm), con elitre a lati quasi paralleli. Pronoto evidentemente più lungo che largo, con punti serrati

5

- Specie meno strette e allungate, mediamente più piccole (lunghezza 2,0-3,1 mm), con elitre a lati leggermente arrotondati e metà apicale un po' allargata. Pronoto quasi così lungo che largo, con punti più spaziati

6
5 Specie dall'aspetto leggermente più slanciato, mediamente più piccola (lunghezza $2,3-3,8 \mathrm{~mm}$). Pronoto abbastanza stretto, più lungo che largo. Elitre proporzionalmente più allungate, a lati quasi paralleli. Apice elitrale con due fossette più piccole, rotondeggianti. Edeago come in Fig. 1 flavipennis

- Specie dall'aspetto leggermente meno slanciato, mediamente più grande (lunghezza $3,0-4,0 \mathrm{~mm}$). Pronoto un po^{\prime} meno stretto, appena più lungo che largo. Elitre proporzionalmente più allargate, leggermente dilatate posteriormente. Apice elitrale con due fossette più grandi, ellittiche. Edeago come in Fig. 2
angustatus
6 Specie dall'aspetto leggermente più slanciato; lunghezza $2,0-3,1 \mathrm{~mm}$. Parte superiore spesso con evidenti riflessi bronzati. Pronoto leggermente più lungo che largo. Sulle elitre sono presenti robuste serie di grandi punti molto infossati. Edeago come in Fig. 3 nitidicollis
- Specie dall'aspetto un po' meno slanciato; lunghezza 2,2-3,0 mm. Parte superiore normalmente più opaca. Pronoto quasi così lungo che largo. Sulle elitre sono presenti robuste serie di punti leggermente meno grandi e soprattutto meno infossati. Edeago come in Fig. 4
grandicollis

Ringraziamenti

Per la collaborazione prestata a vario titolo ringrazio: Giorgio Ferro di Lancenigo (TV), Franz Hebauer di Grafling (Germania) e Fabrizio Rigato del Museo Civico di Storia Naturale di Milano.

Bibliografia

ANGelini F., 1973. Hydrophilidae inediti per Puglia e Lucania (Coleaptera Hydrophilidae). Bollettino della Società entomologica italiana, 105: 75-79.
Angelini F. \& Ferro G., 1974. Hydrophilidae della Sila. Rivista di Idrobiologia, Perugia, 8: 399-417.
ANGUS R.B., 1976. A re-evaluation of the taxonomy and distribution of some european species of Hydrochus Leach (Col., Hydrophilidae). Entomologist's monthly Magazine, 112: 177-201.
Bertolini S., 1872. Catalogo sinonimico e topografico dei Coleotteri d’Italia. Tipografia Cenniniana, Firenze, 263 pp.
Bilardo A., 1965. Ricerche sugli Hydroadephaga della Provincia di Varese (Coleoptera). Memorie della Società entomologica italiana, 44: 109-153.
BINAGHI G., 1960. Materiali per lo studio delle Hydraena e notizie su alcune specie della coleotterofauna acquatica viventi in associazione. Bollettino della Società entomologica italiana, 90: 15-41.
ChIESA A., 1959. hYdrophilidae Europae. Coleoptera Palpicornia. Arnaldo Forni Editore, Bologna, 199 pp.
FERRO G., 1974. Reperti inediti di Idrofilidi nelle regioni meridionali italiane (Coleoptera Palpicornia). Bollettino della Società entomologica italiana, 106: 22-24.
Gagliardi A., 1941. Coleotteri acquatici nuovi per la Toscana. Bollettino della Società entomologica italiana, 73: 35-38.
Hansen M., 1999. World Catalogue of Insects. Volume 2. Hydrophiloidea (s. str.) (Coleoptera). Apollo Books, Stenstrup, 416 pp.
Hebauer F. \& Klausnitzer B., 1998. Insecta: Coleoptera: Hydrophiloidea (exkl. Helophorus). Süsswasserfauna von Mitteleuropa, 20/7, 8, 9, 10-1: 1-134.
Luigioni P., 1929. Coleotteri d'Italia. Catalogo sinonimico-topografico-bibliografico. Tipografia Pio X, Roma, 1: 160 pp .
MARCUZZI G. \& LORENZONI A.M., 1970. Osservazioni ecologiche-faunistiche sul popolamento animale della Palude carsica di Pietra Rossa (Monfalcone). Vie et Milieu, 21: 1-58.
MASCAGNi A. \& CALAMANDREI S., 1996. Primo contributo alla conoscenza degli Hydraenidae, Spercheidae della Toscana (Coleoptera, Hydrophiloidea). Atti del Museo civico di Storia Naturale di Grosseto, 15 (1993): 9-22.
Pirisinu Q., 1972. Primi orientamenti sul popolamento a Palpicorni in tre sorgenti "sulfuree" nella Valle del Meta (Pesaro). Rivista di Idrobiologia, Perugia, 11: 59-63.
Pirisinu Q., 1981. Palpicorni (Coleoptera: Hydraenidae, Helophoridae, Spercheidae, Hydrochidae, Hydrophilidae, Sphaeridiidae). Guide per il riconoscimento delle specie animali delle acque interne italiane, 13. C.N.R., Roma, pp. 97.
PORTA A., 1929. Fauna Coleopterorum Italica. Vol. III. Diversicornia. Stabilimento tipografico Piacentino, Piacenza, pp. 466.

Ribera I., Hernando C. \& Aguilera P., 1999. Notes on the status of Hydrochus interruptus Heyden and H. martinae Makhan. Latissimus, Newsletter of the Balfour-Browne Club, 11: 22-23.
Rocchi S., 2002. Reperti inediti di Hydrophiloidea in Italia (Insecta Coleoptera Helophoridae, Hydrochidae, Hydrophilidae). Quaderno di Studi e Notizie di Storia Naturale della Romagna, 16 suppl.: 43-48.
Rocchi S. \& Terzani F., (in stampa) Contributo alla conoscenza della coleotterofauna acquatica e semiacquatica del Molise (Italia Meridionale) (Coleoptera). Bollettino della Società entomologica italiana.
Rocchi S., Terzani F. \& MASCAGNI A., 2002. Contributo alla conoscenza dei Coleotteri degli ambienti acquatici della Toscana (Italia). III. Helophoridae, Hydrochidae, Hydrophilidae, Spercheidae, Sphaeriusidae, Georissidae (Coleoptera). Quaderni del Museo di Storia Naturale di Livorno, 16 (2001-2002): 7-59.
TATICCHI M.I., 1968. Vicende stagionali delle comunità littoranee del L. Trasimeno (19631965). Rivista di Idrobiologia, Perugia, 7: 195-302.

Indirizzo dell'Autore: Saverio Rocchi, Museo di Storia Naturale dell’Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze

Arnaldo Bordoni

VULDA (TYPHLODES) HOLDHAUSI BERNHAUER, 1908, ENDEMITA TOSCANO

(Coleoptera, Staphylinidae)
147° contributo alla conoscenza degli Staphylinidae
Riassunto. L'autore fornisce nuovi dati sulla distribuzione di Vulda (Typhlodes) holdhausi Bh., endemita dell'Isola d'Elba e delle "isole fossili" della Toscana.

Abstract

Vulda (Typhlodes) holdhausi Bernhauer, 1908, Tuscan endemism (Coleoptera, Staphylinidae). Some new geonemic data on Vulda (Typhlodes) holdhausi Bh., an endemic species from Isola d'Elba and the "fossil islands" of Tuscany are given.

Key words. Coleoptera, Staphylinidae, Vulda, holdhausi, endemism, distribution, "fossil islands", Tuscany.

Introduzione

Tra gli Stafilinidi Xantholinini il genere Vulda Jacquelin du Val, 1852 comprende specie di particolare interesse per caratteristiche morfologiche, per peculiarità biogeografiche e per rarità (BORDONI, 1982). Esse sono divise in due gruppi: il sottogenere Vulda s. str. comprende specie normalmente pigmentate ed oculate che vivono in Turchia, Dalmazia ed Italia e che si trovano nel fogliame e talora sotto corteccia; il sottogenere Typhlodes Sharp, 1873 è invece composto da specie endogee depigmentate, anoftalme e brachittere che vivono sotto pietre profondamente interrate e nel terriccio, nell'area mediterranea.

Alcune di esse, con distribuzione di norma piuttosto ristretta, sono note della Toscana. Fra queste Vulda (Typhlodes) holdhausi Bernhauer che era stata descritta sulla base di una femmina raccolta da Holdhaus sull'Isola d’Elba, sul versante nord del Monte Capanne, sotto una pietra profondamente infossata. La specie era stata in seguito segnalata dubitativamente, ancora su esemplare femmina, anche del Monte Argentario, in una nota a piè di pagina (Gridelli, 1947) ma fino a pochi anni orsono era considerata un raro endemita dell'isola. Essa del resto non era stata più raccolta né sullisola né altrove. Una citazione (KOCH, 1936) relativa a Bagni di Lucca mi pare dubbiosa e non ne tengo conto finché non avrò avuto l'opportunità di esaminare l'esemplare. In tutti i casi si tratta di esemplari di sesso femminile, facilmente riferibili comunque alla stessa specie in base a ben definiti caratteri esterni; le femmine nel sottogenere Typhlodes sono infatti di gran lunga più comuni dei maschi.

Qualche anno fa è stata segnalata (BORDONI, 1984) la presenza di questa entità sul Monte Massoncello presso Piombino e sul Poggio Ballone presso Grosseto. Recentemente gli amici e colleghi Giorgio Castellini e Paolo Magrini mi hanno donato altri esemplari che mi consentono di allargare l'areale di distribuzione della specie e che mi danno lo spunto per alcune considerazioni biogeografiche.

Le nuove località di raccolta sono: Populonia dintorni (LI), M. Bastianini! 10.I.1999, 1 q; Tirli (GR), M. Bastianini! XII.1997, 2 qq; Montioni (GR), M. Bastianini! 15.XI.1998, 1 ¢ ; Castell'Azzara (GR), G. Castellini! 2.I.1988, 1 q.

Populonia è posta sul Promontorio di Piombino, presso il Monte Massoncello e di fronte all'Isola d'Elba; Tirli è a 400 m s.l.m., tra Monte d'Alma e Poggio Ballone, alle spalle di Castiglion della Pescaia; Montioni è località alle spalle del Poggio del Chiecco, a sud-ovest di Massa Marittima; Poggio Ballone è un rilievo di circa 630 m posto a nord di Grosseto, tra Punta Ala e Vetulonia; Castell'Azzara è una località sul Monte Civitella, poggio che raggiunge i 1107 m , a nord-ovest del Lago di Bolsena.

La presenza di specie note dell'Arcipelago Toscano, ma talora anche di Francia meridionale, Corsica e Sardegna, su alcune montagne costiere toscane non è inconsueta, tuttavia merita alcune considerazioni di carattere generale.

Nel Miocene medio-superiore secondo alcuni (ALVAREZ, 1972) o in quello medio-inferiore secondo altri (RADICATI DI BROzolo \& GIGLIA, 1973) si sarebbe verificato il distacco della microplacca sardo-corsa dalla Provenza. Tale evento avrebbe prodotto fenomeni eruttivi che avrebbero portato all'emersione di isole vulcaniche e quindi alla formazione dell'Arcipelago Toscano (Gorgona, Capraia, Elba, Pianosa, Montecristo, Giglio, Giannutri, Cerboli, Palmaiola, Scoglio dello Sparviero, Formiche di Grosseto, Formica di Burano).

D'altro canto, più o meno contemporaneamente, si sarebbe verificato lo sprofondamento dell'area calcarea della porzione meridionale dell'attuale arcipelago i cui resti sarebbero Giannutri, le Formiche, Monte Argentario, il promontorio di Porto Franco nell'isola del Giglio (LAZZAROTTO et al., 1964). Tali isole comunque sono state in contatto tra loro e con il continente durante il Miocene superiore, per evaporazione del Mediterraneo, e nel Pleistocene, durante le glaciazioni, quando il livello del mare si abbassò.
All'inizio del Pliocene, l'ingressione marina produsse un altro fenomeno molto interessante: il frazionamento della Toscana ad ovest degli Appennini, con la formazione di un arcipelago che si aggiunse a quello summenzionato già esistente.

Alcune di queste terre si riunirono alla fine del Pliocene, in seguito alla regressione del mare ed altre molto più tardi, nelle ultime decine di migliaia di anni (LANZA, 1984). Queste sono le cosiddette "isole fossili" (FURON, 1961), zone elevate che sono state isole in passato e che ora sono parte integrante della terraferma. Alle prime, più anticamente riunite al continente, appartengono sulla costa toscana e nell'immediato retroterra località come Monte Pisano, Monte Vitalba, Poggio Cornacchio, le Cornate di Gerfalco, Monte Calvi, Poggio Ballone, Monte Amiata, Monte Cetona, Monte Civitella. Alle seconde, riunite al continente più di recente, appartengono Monte Massoncello, Monte Argentario e i Monti dell'Uccellina. Il popolamento delle isole dell'Arcipelago Toscano e delle isole fossili deve quindi avere avuto origine comune e nello stesso tempo l'insularità può aver prodotto una speciazione che tuttavia dimostra affinità strette con il popolamento continentale ed appenninico in particolare.

Questo affascinante argomento pone evidentemente complesse questioni biogeografiche, soprattutto se investe organismi minuti e numerosissimi, come i Coleotteri, non ancora ben conosciuti dal punto di vista corologico e bionomico, nonostante innumerevoli studi. E^{\prime} quindi utile, per una migliore comprensione del problema, fare riferimento a quanti più
gruppi di insetti possibile e soprattutto a quelli che risultano più studiati. Per questo motivo si suggerisce di far ricorso ai contributi, ad esempio, sugli Isopodi terrestri (FERRARA \& Taiti, 1978), sui Coleotteri in generale (Holohaus, 1923), sui Tenebrionidi (Gardini, 1975), sugli Idrofilidi (Pirisinu, 1975). In questi lavori sono riportati numerosi esempi di specie endemiche delle isole fossili toscane, ben riassunti in un recente contributo (LANZA, I. c.).

L'analisi della distribuzione di Vulda holdhausi contribuisce a meglio chiarire il problema biogeografico cui si è accennato. La specie va ad aggiungersi all'elenco suindicato. La sua attuale distribuzione si sovrappone a numerose isole fossili toscane, nel periodo di massima estensione del mare nel Pliocene inferiore e può quindi essere a ragione definita un paleoendemismo sopravvissuto sull'Isola d'Elba e sulle isole fossili toscane. E' probabile inoltre che la specie sia presente anche in altre stazioni con caratteristiche simili a quelle succitate. In conclusione, almeno per quanto riguarda i Coleotteri, si tratta probabilmente dell'esempio più significativo ed importante fino ad oggi conosciuto di endemismo delle isole fossili in questione, poiché non si riferisce, come nella maggioranza dei casi noti, ad una singola isola dell'Arcipelago o ad una o due delle isole fossili ma all'Isola d'Elba e a ben quattro tra le maggiori isole fossili toscane (Monte Massoncello, Poggio Ballone, Monte Argentario, Monte Civitella), come ben si osserva confrontando le figg. 1 e 2.

Ringraziamenti

Desidero ringraziare G. Castellini (Grosseto) e P. Magrini (Firenze) per gli esemplari donatimi che hanno consentito la stesura di questà nota.

Bibliografia

Alvarez W., 1972. Rotation of the Corsica-Sardinia microplate. Nature Physical Science, 255: 103-105.
BORDONI A., 1982. Fauna d'Italia. XIX. Coleoptera Staphylinidae. Generalità, Xantholininae, Calderini Ed., Bologna, 434 pp.
BORDONI A., 1984. Vulda (Typhlodes) holdhausi Bh. nel Grossetano (Coleoptera, Staphylinidae). Atti del Museo civico di Storia naturale di Grosseto, 3: 39-41.
Ferrara F. \& Taiti S., 1978. Gli Isopodi terrestri dell'Arcipelago toscano. Studio sistematico e biogeografico. Redia, 61: 1-106.
FURON R., 1961. Le peuplement des iles méditerranéennes et le probléme de l'insularite. Colloques internationaux du Centre National de la recherche scientifique, Banyuls-surMer, 1959. XCIV, C.N.R.S., Paris, 7: 3-27.
Gardini G., 1975. Materiali per lo studio dei Tenebrionidi dell'Arcipelago Toscano (Col. Heteromera). Lavori della Società italiana di Biogeografia, n. s., 5: 637-723.
Gridelli E., 1947. La sistematica degli Xantholinini. Secondo contributo. Specie italiane a me note riferibili ai sottogeneri Vulda Jacq-Duval e Typhlodes Sharp (Coleopt. Staphyl.). Atti del Museo Civico di Storia Naturale di Trieste, 16, 9: 97-130.
Holodhaus K., 1923. Elenco dei Coleotteri dell'Isola d'Elba, con studi sul problema della Tirrenide. Memorie della Società entomologica italiana, 2: 77-175.
KOCH C., 1936. Appunti sugli Stafilinidi italiani. Bollettino della Società entomologica italiana, 68: 17-21.
LANZA B., 1984. Sul significato biogeografico delle isole fossili, con particolare riferimento all'Arcipelago pliocenico della Toscana. Atti della Società italiana di Scienze naturali e Museo civico di Storia naturale di Milano, 125 (3-4): 145-158.
Lazzarotto A., Mazzanti R. \& Mazzoncini F., 1964. Geologia del Promontorio dell'Argentario (Grosseto) e del Promontorio del Franco (Isola del Giglio - Grosseto). Bollettino della società geologica italiana, 83 (1), 124 pp .
PIrisinu Q., 1975. Considerazioni zoogeografiche sugli Idroadefagi e palpicorni della Capraia (Arcipelago Toscano). Lavori della Società italiana di Biogeografia, n. s., 5: 725-736.
Radicati Di Brozolo F. \& Giglia G., 1973. Further data on the Corsica-Sardinia rotation. Nature, London, 241: 389-391.

Indirizzo dell'autore: Arnaldo Bordoni, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze
e-mail arnaldo.bordoni@libero.it

Alessandro Mascagni

GEORISSIDAE DELLA TOSCANA

(Coleoptera)

Riassunto. Vengono date notizie di biologia, sistematica, metodi di raccolta e preparazione, indirazioni per il riconoscimento delle specie italiane mediante semplici tabelle dicotomicne corredate da figure ed infine vengono riportate tutte le località di raccolta degii esemplari toscani con una breve nota zoogeografica.

Abstract

Georissidae (Coleoptera) from Tuscany. Information on the biology, taxonomy, collecting methods and preparation is given together with keys and figures for determining Italian species. Also indicated are the localities where the Tuscan specimens have been collected complete with concise zoogeographical notes.

Key words. Coleoptera, Georissidae, Georissus, biology, systematics, key, faunistics, Italy, Tuscany, checklist.

Introduzione

I Georissidae, coleotteri di piccolissime dimensioni (da mm 1,0 a mm 2,1), sono tutti tra loro morfologicamente molto simili. Nel mondo si conoscono circa 80 specie appartenenti a questa famiglia, mentre solo 5 sono note in Europa ed anche in Italia; stando alle attuali conoscenze solo una specie manca in Toscana. Riguardo la distribuzione delle 5 specie sul territorio nazionale, e quindi anche delle 4 presenti in Toscana, si hanno dati assai frammentari, scarsi e spesso obsoleti, a riprova del fatto che questi coleotteri sono stati sempre trascurati. Scarsissimo è il numero di esemplari presenti nelle collezioni pubbliche e private, mentre in alcuni casi mancano addirittura rappresentanti di questa famiglia; per la Toscana, ad esempio, sono noti complessivamente meno di 200 esemplari. Malgrado ciò la Toscana è la regione meglio conosciuta (41 reperti)! mentre non ci sono segnalazioni per Val d'Aosta, Marche e Abruzzo.

È stato esaminato materiale delle seguenti collezioni:
CAF = coll. Fernando Angelini, Francavilla Fontana (BR).
CMS = coll. Alessandro Mascagni, Scandicci (FI).
CRF = coll. Saverio Rocchi, Firenze.
CTF = coll. Fabio Terzani, Firenze.
MCSN = Museo Civico di Storia Naturale "Giacomo Doria" di Genova.
MSNM = Museo Civico di Storia Naturale di Milano.
MZUF = Museo Zoologico "La Specola" dell'Università degli Studi di Firenze.

Biologia

Fig. 1. Georissus crenulatus: adulto (da Bameul, 1991) e larva (da Emden, 1956).
La biologia dei Georisidae è in gran parte sconosciuta. Sia gli adulti che le larve (Fig. 1) sono fitofagi e vivono prevalentemente infossati in suoli umidi lungo le sponde di corsi e raccolte d'acqua e si spostano durante l'anno per seguire il livello di riva. Chi ha raccolto gli adulti di questi coleotteri o li ha osservati al microscopio, avrà sicuramente notato che il loro esoscheletro è più o meno ricoperto da granelli di sabbia che restano saldamente incollati al pronoto e alle elitre rendendo pressoché impossibile la visione della superficie del corpo; il curioso fenomeno ha lo scopo di mimetizzare l'insetto, che è di colore nero, con l'ambiente circostante, rendendolo pressoché invisibile ai predatori. Illuminante, a questo proposito, è ciò che afferma BINAGHI (1966) riguardo la specie Georissus laesicollis Germar, 1831 da lui raccolta a Bagni di San Filippo, presso M.te Amiata: "... questo Georyssus è stato raccolto immerso nella fanghiglia biancastra distribuita alle rive del torrentello e, all'atto della cattura, i suoi tegumenti risultavano totalmente rivestiti di bianche incrostazioni calcaree che lo mimetizzavano col substrato rendendolo difficilmente individuabile."

Fig. 2. Georissus crenulatus: fasi del camuffaggio (da BAMEUL, 1989).
Il coleottero, con movimenti ben definiti e costanti delle zampe, raccoglie e deposita sul pronoto e sulle elitre granelli di sabbia che vengono cementati usando come collante una secrezione boccale che solidifica nel giro di 15-20 minuti (Fig. 2). L'operazione termina quando il corpo è ricoperto da una crosta spessa anche mezzo millimetro formata da un impasto di granelli di sabbia e fini detriti vegetali (BAMEUL, 1989).

Sistematica

La famiglia dei Georissidae (sub Georyssidae Gutfl. Kf. Deutschl. 1859: 292) è stata per molto tempo considerata prossima a Dryopidae, Elmidae ed Heteroceridae, come riportato anche in molti Cataloghi (MÜLler, 1909; Zaitzev, 1910; Luigioni, 1929; PORTA, 1929; PORTEVIN, 1931); alcuni Autori I'hanno invece avvicinata a Gyrinidae e Hydrophilidae (SHARP \& MUIR, 1912). Nel 1950 Crowson, con uno studio approfondito dell'adulto e in particolare delle antenne e di parti esoscheletriche, colloca i Georissidae nella superfamiglia Hydrophiloidea. VAN EMDEN (1956) riconosce nelle larve di G. crenulatus (Rossi, 1794) alcune somiglianze con quelle ciel genere Helophorus Fabricius (Helophoridae Hydrophiloidea). Analogie dell'edeago (tipo trilobato) con gli Hydrophilidae vengono rilevate da Delève (1967; 1972), Hansen (1987), Paulian \& Legros (1943), Satô (1971). Attualmente la maggior parte degli Autori è d'accordo nell'inserire i Georissidae nella superfamiglia degli Hydrophiloidea (BRITTON, 1970; IABLOKOFF-KHNZORIAN, 1980; HANSEN, 1987; PAULIAN, 1988; Audisio et al.,1995; ARCHANGELSKY, 1998; JÄCH, 1998).

Metodi di raccolta e preparazione

I Georissidae, vivono sulle rive di corsi d'acqua e ai bordi di pozze e stagni nascondendosi spesso nel terreno ad una certa profondità; è possibile farli uscire gettando dell'acqua sulla sabbia dove si presume possano trovarsi, attendendo poi, a volte anche qualche minuto, la loro lenta uscita dal terreno. Possono trovarsi anche sotto pietre semisommerse. In alcuni casi gli esemplari sono stati raccolti vagliando il terreno in prossimità di un corso d’acqua. La raccolta di questi coleotteri può essere effettuata anche con l'uso di lampade UV. Prima di preparare su cartellino questi insetti è necessario, per la loro classificazione, pulire l'esoscheletro dalla crosta di granelli di sabbia e detriti vegetali che li ricopre, impedendo di vedere le caratteristiche del pronoto e delle elitre, essenziali per la loro determinazione. In genere si usa immergere per qualche tempo gli esemplari in acqua; per la pulizia ci si può anche servire di microaghi e fini pennelli.

Catalogo delle specie

Per ogni specie viene fornito il codice numerico individuante la specie nella Checklist della Fauna italiana, I'elenco dei sinonimi, il corotipo di appartenenza secondo VIGNA TAGLIANTI et al. (1993), i dati bibliografici riguardanti la specie e il territorio italiano (con * quelli riguardanti in particolare la Toscana), la distribuzione regionale in Italia, le località di raccolta riguardanti la Toscana con coordinate dei reticoli UTM, altitudine, data, raccoglitore, collezione (in sigla) nella quale sono depositati gli esemplari e il numero degli stessi, e le note di commento.

1-046.037.0.003.0 Georissus (Georissus) crenulatus (Rossi, 1794)
(Byrrhus) crenulatus Rossi, Mant. Ins. Etr. II, 1794: 81. (Pimelia) pygmaeus Fabricius, Suppl. Entom. Syst., 1798: 45. (Trox) dubius Panzer, Fn. Germ. 62, 1799: 5. punctatus Grimmer, Steierm. Col., 1841: 40. major Motschulsky, Bull. Soc. Nat. Moscou XVI, 1843: 647. incisus Motschulsky, I. c.: 649. spinicollis Motschulsky, I. c.: 653. mutilatus Motschulsky, l. c.: 655. bisulcatus Motschulsky, I. c.: 657. subsp. integrostriatus Motschulsky, I. c.: 650. siculus Ragusa, Boll. Soc. ent. ital., 5, 1873: 233. canaliculatus Reiche, Ann. Soc. ent. fr., (5) IX, 1879: 237. nepos Fairmaire,

Rev. Mag. Zool., (3) VII, 1879: 182. var. corcyraeus J. Sahlberg, Öfvers. Finsk. Vet. Handl., XLV, 1902: 25.
Corotipo: Sibirico-europeo.
Bibl.: Della Beffa, 1911: 139. Porta, 1929: 294. Luigioni, 1929: 445. Binaghi, 1966: 30 *. Zangheri, 1969: 1333. Brivio, 1970: 147. Angelini \& Montemurro, 1986: 572. Lundberg et al., 1987: 125. BAMEUL, 1991: 254. MASCAGNi, 1992: 16. MASCAGNi, 1995: 124. Sparacio, 1995: 91. RocChi et al., 2002: 45*.
Distribuzione regionale: Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Liguria, Emilia Romagna, Toscana, Umbria, Lazio, Puglia, Basilicata, Calabria, Sicilia, Sardegna.
Distribuzione Toscana: AR - all. torr. Cerfone m 350, Monterchi [TJ61], 29.VI.1934, A. Andreini!, 1 ex. (MZUF); all. fiume Tevere m 330, Sansepolcro [T]62], 26. XII.1925, A. Andreini!, 1 ex. (MZUF). FI - all. fiume Arno a Firenze m 50 [PP84], 2.I.1929, A. Andreini!, 1 ex. (MZUF), 1 ex. (CMS); greto fiume Arno a Ricorboli, Firenze m 50 [PP84], senza data, coll. Piccioli, 4 exs. (MZUF); Firenze m 50 [PP84], IV.1925, M. Lombardi!, 1 ex. (MSNM). GR - Fosso Rigo m 30, Poggio Cavallo [PN73], XII.1897, A. Andreini!, 1 ex. (MZUF); Poggio Cavallo [PN73], X.1907, 2 exs. (MZUF), V.1908, 8 exs. (MZUF), 1 ex. (CMS); San Rocco m 10 [PN73], XII.1923, A. Andreini!, 1 ex. (CMS); greto fiume Ombrone m 240, Sasso d'Ombrone [PN85], G. Binaghi! (1966); greto fiume Ombrone m 100, Campagnatico [PN85], 24.VIII.1980, G. Castellini!, 1 ex. (CRF). LI - Gombo m 5 [PP04], V.1853, coll. Piccioli, 3 exs. (MZUF). LU - Viareggio m 5 [PP05], IX.1882, A. Dodero!, 3 exs. (MCSN), 29.XII.1957, N. Sanfilippo!, 12 exs. (MCSN); pozze in pineta, Viareggio m 5 [PP05], VII.1922, A. Marchi!, 7 exs. (MZUF), 2 exs. (CMS); dintorni di Lucca m 20 [PP25], senza data, coll. Piccioli, 1 ex. (MZUF); Bagni di Lucca m 150 [PP27], senza data, coll. Piccioli, 6 exs. (MZUF); Lucchesia, senza data, co!l. Piccioli, 3 exs. (MZUF). PI - confl. Fiume Cecina con Rio del Gagno m 70, Volterra [PP50], 10.V.1989, A. Mascagni!, 1 ex. (CMS). SI - Torrita di Siena m 320 [QN28], 6.VI.1921, A. Marchi!, 7 exs. (MZUF), 2 exs. (CMS); Guazzino m 280 [QN28], VIII.1922, A. Marchi!, 6 exs. (MZUF), 1 ex. (CMS). Toscana, senza data, senza raccoglitore, 3 exs. (MSNM).
Note: vive lungo le rive di fiumi e torrenti, sotto le pietre semisommerse, tra i detriti e nel limo. La specie è la più comune nella regione.

2-046.037.0.005.0 Georissus (Georissus) substriatus Heer, 1841
substriatus Heer, Fn. Helv., 1841: 472. tenuipunctatus Motschulsky, Bull. Soc. Nat. Moscou XVI, 1843: 652.
Corotipo: Europeo.
Bibl.: DeLLa Beffa, 1911: 139. PORTA, 1929: 294. LUigioni, 1929: 446. MASCAGNi, 1992: 17. MASCAGNI, 1993: 73.
Distribuzione regionale: Piemonte, Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Liguria, Emilia Romagna, Sardegna.
Note: vive lungo le rive dei fiumi, sotto le pietre semisommerse. Data la presenza della specie in ben due regioni confinanti con la Toscana, è probabile che una ricerca più assidua e mirata porti alla scoperta di esemplari anche in questa regione.

3-046.037.0.001.0 Georissus (Neogeorissus) caelatus Erichson, 1847 caelatus Erichson, Naturg. Ins. Deutschl. III, 1847: 504.
Corotipo: Turanico-europeo.

Bibl.: Luigioni \& Tirelli, 1910: 52. Della Beffa 1911: 139. Porta, 1929: 294. Luigioni, 1929: 446. LUNDBERG et al., 1987: 125. MASCAGNI, 1992: 17. MASCAGNi, 1993: 73. Rocchi et al., 2002: 45 *.
Distribuzione regionale: Piemonte, Trentino Alto Adige, Friuli Venezia Giulia, Emilia Romagna, Toscana, Lazio, Campania, Sicilia.
Distribuzione Toscana: FI - fiume Arno a Ricorboli, Firenze m 50 [PP84], senza data, coll. Piccioli, 1 ex. (MZUF).
Note: vive lungo le rive dei fiumi, nella sabbia. La specie è stata raccolta, oltre un secolo fa, una sola volta in Toscana, ove potrebbe essere estinta.

4-046.037.0.002.0 Georissus (Neogeorissus) costatus Laporte de Castelnau, 1840 costatus Laporte de Castelnau, Hist. Nat. II, 1840: 45. latreillei Dufour, Bull. Soc. Sc. Pau, 1843: 57. carinatus Rosenhauer, Thiere Andal., 1856: 112. pimelioides Fairmaire, Ann. Soc. ent. fr. (3) VII, 1859: 45. cupreus Reiche, Ann. Soc. ent. fr. (5) IX, 1879: 237.
Corotipo: Turanico-europeo.
Bibl.: LUigioni \& Tirelli, 1910: 52. Della Beffa, 1911: 139. Porta, 1929: 294. LUIGIONI, 1929: 446. BINAGHI, 1966: 30 *. LUNDBERG et al., 1987: 125. MASCAGNi, 1989: 74 *. MASCAGNI, 1992: 17. MASCAGNI, 1993: 73. MASCAGNI, 1995: 125. SPARACIO, 1995: 92. MASCAGNI, 1997: 137. ROCCHI et al., 2002: 46 *.
Distribuzione regionale: Piemonte, Lombardia, Toscana, Lazio, Basilicata, Calabria, Sicilia, Sardegna.
Distribuzione Toscana: FI - all. fiume Arno a Firenze m 50 [PP84], 2.I.1925, A. Andreini!, 1 ex. (MZUF), 1 ex. (CMS). GR - greto fiume Ombrone m 240, Sasso d'Ombrone [PN85], G. Binaghi! (1966); greto fiume Ombrone m 100, Campagnatico [PN85], 24.VIII.1980, G. Castellini!, 1 ex. (CRF). LU - greto fiume Serchio a Diécimo m 75, Borgo a Mozzano [PP27], 2.VIII.1997, A. Mascagni \& S. Rocchi!, 4 exs. (CMS), 6 exs. (CRF). PI - confl. Fiume Cecina con Rio del Gagno m 70, Volterra [PP50], 10.V.1989, A. Mascagni \& F. Terzani!, 3 exs. (CMS), 1 ex. (CTF). SI - greto fiume Farma m 200, Solaia [PN87], 5.VI.1976, S. Rocchi!, 1 ex. (CRF), 1 ex. (CMS).
Note: vive lungo le rive dei fiumi, sotto le pietre semisommerse e fra i detriti. Ė specie piuttosto rara.

5-046.037.0.004.0 Georissus (Neogeorissus) laesicoilis Germar, 1831
laesicollis Germar, Ahr. Fn. Ins. Europ. XV, 1831: 3. canaliculatus Motschulsky, Bull. Soc. Nat. Moscou XVI, 1843: 659.
Corotipo: Turanico-europeo.
Bibl.: Della Beffa, 1911: 139. Porta, 1929: 294. Luigioni, 1929: 446. Binaghi, 1966: 30 *. LUNDBERG et al., 1987: 125. MASCAGNI, 1992: 17. MÁSCAGNI, 1995: 125. MASCAGNI, 1997: 137. ROCCHI et al., 2002: 46 *.
Distribuzione regionale: Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Liguria, Emilia Romagna, Toscana, Umbria, Lazio, Campania, Molise, Basilicata, Calabria, Sicilia, Sardegna.
Distribuzione Toscana: AR - all. torr. Cerfone m 350, Monterchi [T]61], IX.1922, A. Andreini!, 1 ex. (MZUF); greto fiume Arno a Ponte a Poppi m 340, Poppi [QP24], 17.VII.1998, S. Rocchi!, 1 ex. (CRF). FI - all. fiume Arno a Firenze m 50 [PP84], V.1939, A. Martelli!, 1 ex. (MSNM); greto fiume Arno a Ricorboli m 50, Firenze [PP84], senza data, coll. Piccioli, 2 exs. (MZUF); Borro del Cesto a Ponte agli Stolli m 160, Figline Valdarno [PP93], 26.VII.1998, A. Mascagni!, 19 exs. (CMS); vaglio del
terreno presso torrente al Passo della Futa m 900 [PP88], VIII.1972, F. Magini!, 1 ex. (MZUF), 1 ex. (CMS). GR - San Rocco m 10 [PN73], senza data, A. Andreini!, 1 ex. (MCSN); Fosso Trogolo m 100, Magliano in Toscana [PN81], 30.V.2002, S. Rocchi!, 2 exs. (CRF). LI - Gombo m 5 [PP04], V.1853, coll. Piccioli, 4 exs. (MZUF). LU - Fornovolasco m 700 [PP07], 22.VI.1992, F. Angelini!, 2 exs. (CAF); greto fiume Serchio a Diécimo m 75, Borgo a Mozzano [PP27], 2.VIII.1997, A. Mascagni!, 8 exs. (CMS), 1 ex. (CTF), 1 ex. (CRF). MS - greto torr. Gortana m 660, Coloretta [NQ61], 25.VIII.1974, N. Sanfilippo!, 2 exs. (MSNM). SI - Rapolano Terme m 335 [QN19], V.1922, A. Marchi!, 1 ex. (MZUF); Bagni di San Filippo m 500 [QN25], G. Binaghi! (1966); greto fiume Feccia m 280, Frosini [PN78], 2.VI.1990, A. Mascagni!, 1 ex. (CMS); greto fiume Farma m 200, Solaia [PN87], 22.VII.1978, S. Rocchi!, 4 exs. (CRF), 1 ex. (CMS).
Note: vive nella sabbia lungo le rive di fiumi e torrenti, sotto le pietre semisommerse. É specie comune nella regione; negli ultimi anni è il Georissus raccolto più di frequente.

Fig. 3. A, Pronoto del subgen. Georissus; B, Pronoto del subgen. Neogeorissus; C, Elitra di Georissus crenulatus; D, Elitra di Georissus substriatus; E, Elitra di Georissus laesicollis; F, Elitra di Georissus caelatus; G, Elitra di Georissus costatus.

Tabella dicotomica per il riconoscimento delle 5 specie italiane
1a Pronoto per circa i due terzi posteriori liscio o soltanto con una debole linea mediana. Subgen. Georissus (Fig. 3a)

2
1b Pronoto per circa i due terzi posteriori con rilievi e depressioni. Subgen. Neogeorissus (Fig. 3b)

3
2a Pronoto col terzo anteriore provvisto di tubercoli e fossette e spesso con solco mediano. Elitre con 10 serie di punti ciascuna grossi e profondi (Fig. 3c) ... G. crenulatus (Rossi, 1794) (mm 1,50-2,10)
2b Pronoto col terzo anteriore senza tubercoli e fossette; presenza di una debole linea mediana che lo attraversa longitudinalmente. Elitre con 9 serie di punti ciascuna, poco profondi e con intervalli lisci. Callo omerale ben evidente (Fig. 3d) ... G. substriatus Heer, 1841 (mm 1,60-1,80)
3a Elitre con strie (più di 4 ciascuna) strette e separate da coste granuliformi (Fig. 3e)
G. laesicollis Germar, 1831 (mm 1,0-1,30)

3b Elitre con 3-4 strie ciascuna, larghe e separate da coste ben marcate 4
4a Elitre con 3 marcate coste, separate da strie guarnite da più serie di granulazioni ben evidenti (Fig. 3f) G. caelatus Erichson, 1847 (mm 1,20-1,40)
4b Elitre con 3 marcate coste, separate da strie larghe con al centro una serie allineata di granulazioni a distanza tra loro variabile (Fig. 3g)
G. costatus Laporte de Castelnau, 1840 (mm 1,40-1,80)

Aspetti zoogeografici

Le cinque specie di Georissidae italiane sono tutte ad ampia distribuzione: Regione olartica (80%) e Regione europea (20%). In particolare, tre sono turanico-europee (60 \%) [Georissus caelatus, G. costatus, G. laesicollis], una sibirico-europea (20 \%) [G. crenulatus], una europea (20%) [G. substriatus].

Ringraziamenti

Desidero ringraziare gli amici e colleghi Fernando Angelini (BR), Luca Bartolozzi (FI), Carlo Leonardi (MI), Roberto Poggi (GE), Saverio Rocchi (FI) e Fabio Terzani (FI) per avermi consentito di esaminare il materiale di loro proprietà o a loro affidato.

Bibliografia

Angelini F. \& Montemurro F., 1986. Coleotterofauna del bosco di Policoro (Matera) (Coleoptera). Biogeographia. Lavori della Società Italiana di Biogeographia, 10 (N.S.) (1984): 545-604.

Archangelsky M., 1998. Phylogeny of Hydrophiloidea (Coleoptera: Staphyliniformia) using characters from adult and preimaginal stages. Systematic Entomology, 23: 9-24.
Audisio P., De Biase A., Ferro G., Mascagni A., Penati F., Pirisinu Q. \& Vienna P., 1995. Coleoptera Myxophaga, Polyphaga I (Hydrophiloidea, Histeroidea). In: Minelli A., Ruffo S. \& La Posta S. (eds.): Checklist delle specie della fauna italiana, 48. Calderoni Ed., Bologna.
Bameul F., 1989. Description du comportement de camouflage d'un Coléoptère: le déguisement actif de Georissus crenulatus (Coleoptera Georissidae), et proposition
d'une nouvelle classification des déguisements chez les Invertébrés. Comptes Rendus de l'Academie des Sciences Paris, 309 (3): 351-356.
Bameul F., 1991. Redescription de Georissus crenulatus (Rossi), Coléoptère ripicole mal connu (Col. Georissidae). Bulletin de la Société Entomologique de France, 95 (7-8) 1990: 253-258.
BINAGHI G., 1966. Notizie sulla coleotterofauna acquaiola delle sorgenti termali dei Bagni di San Filippo alle falde del M.te Amiata. Bollettino della Società entomologica italiana, Genova, 96: 27-30.
Britton E.B., 1970. Coleoptera (Beetles). In: The Insects of Australia. Melbourne University Press, 1029 pp.
Brivio C., 1970. La coleotterofauna del Lago di Sartirana Briantea (Brianza orientale,' Lombardia). Memorie della Società entomologica italiana, Genova, 49: 103-152.
Crowson R.A., 1950. The natural classification of the families of Coleoptera. E.W. Classey Ltd., Hampton, 214 pp.
Deleve J., 1967. Les Georissus de Madagascar (Coleoptera Georissidae). Bulletin et Annales de la Société Entomologique de Belgique, 103 (5-6): 233-254.
Deleve J., 1972. Les Georissidae (Coleoptera) de Ceylan. Bulletin et Annales de la Société Entomologique de Belgique, 108: 149-165.
Della Beffa G., 1911. Georyssidae. In: I Coleotteri dell'Agro torinese e loro rapporti colla vegetazione e l'agricoltura. Tip. Vincenzo Bona, Torino: 139.
Emden F.I. van, 1956. The Georyssus larva - a Hydrophilid. Proceedings of the Royal Entomological Society London, (A), 31 (1-3): 20-23.
Hansen M., 1987. The Hydrophiloidea (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 18. E. J. Brill / Scandinavian Science Press Ltd., Leiden, Copenhagen, 254 pp.
Iablokoff - Khnzorian S. M., 1980. Le segment génital mâle des coléoptères et son importance phylogénique (Coleoptera). Deutsche Entomologische Zeitschrift, Berlin, (N.F.), 27 (4-5): 251-295.

JÄCH M. A., 1998. Annotated check list of aquatic and riparian/littoral beetle families of the world (Coleoptera). In: Jäch M. A. \& Ji L. (eds.): Water Beetles of China, 2, pp. 2542. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
Luigioni P., 1929. I Coleotteri d' Italia. Catalogo sinonimico-topografico-bibliografico. Scuola Tipografica Pio X, Roma, 1021 pp.
Luigioni P. \& Tirelli A., 1910. Coleotteri del Lazio non citati come tali nel "Catalogo dei Coleotteri d'Italia" del Dott. Stefano Bertolini. Bollettino della Società entomologica italiana, 42: 43-93.
Lundberg S., Palm T. \& Trottestam O., 1987. Skalbaggsstudier på Siciliens nordkust. II. Gräsmark, flodmynningar, havsstrand m m.. Entomologisk Tidschrift, 108: 123-129.
MASCAGNi A., 1989. Georyssus costatus Lap. De Castelnau, 1810 (Coleoptera Georyssidae). Segnalazioni Faunistiche Italiane. Bollettino della Società entomologica italiana, Genova, 121 (1): 74.
MASCAGNi A. 1992: La collezione di Heteroceridae e Georissidae del Museo Civico di Storia naturale di Trieste (Coleoptera: Heteroceridae, Georissidae). Atti del Museo Civico di Storia naturale di Trieste, 44: 11-18.
MASCAGNi A., 1993. Georissus costatus Laporte, 1810; Georissus caelatus Erichson, 1847; Georissus substriatus Heer, 1841 (Coleoptera Georissidae). Segnalazioni Faunistiche Italiane. Bollettino della Società entomologica italiana, Genova, 125 (1): 73-74.

MASCAGNi A., 1995. Nuovi dati su alcuni coleotteri italiani (Limnichidae, Dryopidae, Elmidae et Georissidae). Bollettino della Società entomologica italiana, Genova, 127 (2): 122-126.

MASCAGNI A., 1997. Coleoptera Georissidae. In: Zapparoli M. (ed.): Gli Insetti di Roma. Fratelli Palombi Ed., Roma: 137-138.
Müller J., 1909. Georyssidae, Dryopidae, Heteroceridae et Hydrophilidae Dalmatiae. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien: 456-471.
Paulian R., 1988. Biologie des Coléoptères. Lechevalier, Paris, 688 pp.
Paulian R. \& Legros C., 1943. Les Géoryssides africains. Revue de Zoologie et de Botanique Africaines, 37 (1-2): 190-202.
PORTA A., 1929. Fauna Coleopterorum Italica. III. Diversicornia. Stabilimento Tipografico Piacentino, Piacenza, 466 pp.
Portevin G., 1931. Georissidae. In: Histoire Naturelle des Coléoptères de France. Lechevalier et fils eds., Paris, (2): 291-292.
Rocchi S., TERZANI F. \& MASCAGNI A., 2002. Contributo alla conoscenza dei Coleotteri degli ambienti acquatici della Toscana (Italia). III. Helophoridae, Hydrochidae, Hydrophilidae, Spercheidae, Sphaeriusidae, Georissidae (Coleoptera). Quaderni del Museo di Storia Naturale di Livorno, 16 (2001-2002): 7-59.
Satô M., 1971. The Georissid Beetles of Japan. J Nagoya Women's Coll., 18: 207-213.
Sharp D. \& MUIR A., 1912. The comparative anatomy of the male genital tube in Coleoptera. Transactions of the Royal Entomological Society, London: 477-642.
Sparacio I., 1995. Coleotteri di Sicilia. L'Epos Società Editrice, 264 pp.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M., Bologna M.A., Carpaneto G.M., de Biase A., de Felici S., Piattella E., Racheli T., Zapparoli M. \& Zoia S., 1993. Riflessioni di gruppo sui corotipi fondamentali della fauna W-paleartica ed in particolare italiana. Biogeographia, Lavori della Società italiana di Biogeographia, (N.S.) 16 (1992): 159-179.

Zaitzev P., 1910. Dryopidae, Cyathoceridae, Georyssidae, Heteroceridae. Coleopterorum Catalogus auspiciis et auxilio W. Junk, Berlin, 17: 1-68.
ZANGHERI P., 1969. Repertorio sistematico e topografico della flora e fauna vivente e fossile della Romagna. III. Museo civico di Storia naturale di Verona, Mem. 1, 1414 pp.

Indirizzo dell'autore: Alessandro Mascagni, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze e-mail: pcfmas@tin.it

LEONARDO DAPPORTO \& Filippo FABIANo

CARATTERI GENERALI DELLA LEPIDOTTEROFAUNA TOSCANA
 (Lepidoptera)

Riassunto. Vengono esposti, a grandi linee, gli aspetti salienti della fauna lepidotterologica della Toscana. In particolare vengono evidenziate le influenze sardocorse sul popolamento delle isole dell'Arcipelago Toscano e del litorale tirrenico.

Abstract. Basic outline of the lepidopteran fauna of Tuscany. The main faunistic and biogeographic characters of the Lepidoptera in Tuscany are briefly outlined. The influences of the Sardinian and Corsican faunas on the population of the Tuscan Archipelago as well as the coastal areas of southern Tuscany are discussed.

Key words. Lepidotteri, Toscana, isole tirreniche, faunistica, biogeografia.

Introduzione

Tra le regioni italiane la Toscana rappresenta quella che forse offre la maggiore diversità di ambienti, da quelli subalpini dell'Appennino tosco-emiliano, che nel settore nordoccidentale si eleva ad altitudini superiori ai 2000 m , a quelli costieri di macchia mediterranea con un sistema dunale ancora discretamente conservato come il Parco Naturale della Maremma. Tra questi due estremi troviamo una successione di ambienti collinari dove spesso la gestione del patrimonio agricolo e forestale non ha raggiunto livelli di impatto devastanti per gli ecosistemi naturali, come ad esempio le Colline Metallifere e i bacini idrografici del Cecina e dell’Ombrone. Nel mosaico ambientale della Toscana non mancano zone umide di grande valore naturalistico come il Padule di Fucecchio e il Parco di Massaciuccoli-Migliarino-San Rossore, zone di media montagna con estese aree boschive ben conservate tra cui il Parco Nazionale delle Foreste Casentinesi, massicci calcarei come le Alpi Apuane caratterizzati da forme aspre che ricordano l'Appennino centrale e infine un arcipelago di sei isole tra cui una, l'Isola d'Elba, è la più estesa delle isole minori italiane.
E^{\prime} evidente che una regione con una così grande diversità ambientale ospiti una varia e ricca lepidotterofauna a cui contribuisce anche la posizione geografica. Notevoli influenze sulla fauna della Toscana sono dovute infatti alla vicinanza di due tra i più importanti "biodiversity hot-spot" dell'area mediterranea: le Alpi Marittime e la Corsica (MÉDAIL \& Quézel, 1999). Le Alpi Marittime, tramite l'Appeninno ligure ed emiliano, sono in continuita con i monti della Toscana settentrionale, mentre la Corsica influenza la lepidotterofauna tirrenica attraverso le isole Toscane.

I rilievi dell'Appennino settentrionale ospitano svariate specie ampiamente distribuite nella regione alpina che trovano qui il loro limite meridionale. Possiamo citare tra queste: Erebia aethiops (Esper, 1777), Erebia medusa (Denis \& Schiffermüller, 1775), Erebia neoridas (Boisduval, 1828), Minois dryas (Scopoli, 1763), Sabra harpagula (Esper,
1786), Isturgia limbaria (Fabricius, 1775), Parietaria serotinaria (Denis \& Schiffermüller, 1775), Parietaria dognini (Thierry-Mieg, 1910), Colostygia laetaria (La Harpe, 1853), Horisme calligraphata (Herrich-Schäffer, 1839), Eupithecia cretaceata (Packard, 1874), Eupithecia lariciata (Freyer, 1841), Carsia lythoxylata (Hübner, 1799), Cerapteryx graminis (Linnaeus, 1758), Euxoa birivia (Denis \& Schiffermüller, 1775), Orgyia recens (Hübner, 1819) (Marini \& Trentini, 1986; Bertaccini et al., 1997; Dapporto \& Fabiano 2000a, 2000b; Flamigni et al., 2001). Altre specie tipiche dell'ambiente subalpino segnalate nelle Alpi Apuane o nell'Appennino pistoiese si ritrovano più a sud soltanto nei grandi massicci dell'Italia centrale (Gran Sasso e Sibillini); fra queste Erebia euryale (Esper, 1§05), Erebia epiphron (Knoch, 1783), Erebia alberganus (Prunner, 1798), Erebia mentana (Prunner, 1798), Erebia meolans (Prunner, 1798), Autographa bractea (Denis \& Schiffermüller, 1775), Chersotis cuprea (Denis \& Schiffermüller, 1775), Standfussiana lucernea (Linnaeus, 1758), Euxoa decora (Denis \& Schiffermüller, 1775). La presenza di elementi subalpini nelle Alpi Apuane sembra dovuta, più che all'altitudine che è relativamente modesta, alle particolari caratteristiche climatiche e ambientali di questo massiccio più simili a quelle delle Alpi che a quelle dell'Appennino toscano.

Le isole dell'Arcipelago Toscano invece presentano diversi gradi di somiglianza con la Corsica e la Sardegna. Esse condividono con le isole maggiori un gran numero di specie assenti dalla Toscana continentale: Hyles dahlii (Geyer, 1827), Argynnis pandora (Denis \& Schiffermüller, 1775), Hipparchia aristaeus (Bonelli, 1826), Hipparchia neomiris (Godart, 1822), Coenonympha corinna (Hübner, 1804), Lasiommata paramegaera (Hübner, 1824), Pachycnemia benesignata (Bellier, 1861), Compsoptera jourdanaria (Serres, 1826), Idaea rhodogrammaria (Püngeler, 1913), Xanthorhoe disjunctaria (La Harpe, 1860), Xanthorhoe oxybiata (Millière, 1872), Polymixis flavicincta (Denis \& Schiffermüller, 1775), Hadena sancta (Staudinger, 1859), Lymantria atlantica (Rambur, 1837), Orgyia rupestris Rambur, 1832 (Biermann, 1990; Biermann, in stampa; Berio, 1993; Raineri, 1993; Zilli, 1994; DAPPORTO et al., 1999; DAPPORTO et al., 2003; DAPPORTO, in stampa). In particolare le isole di Capraia e Montecristo sono particolarmente ricche di tali elementi, mentre la lepidotterofauna di Elba, Giglio, Gorgona e Pianosa, pur presentando una discreta percentuale di queste specie, ha nel complesso un carattere di maggior continentalità. Peraltro alcuni elementi endemici della regione sardo-corsa, o limitati, nell'area tirrenica, al sistema insulare, si ritrovano lungo il litorale toscano. Nel Parco della Maremma (Monti dell’Uccellina) sono state rinvenute: Petrophora binaevata (Mabille, 1869), Gnophos corsica (Oberthür, 1913), Idaea obliquaria (Turati, 1913), Eupithecia sardoa Dietze, 1910 (RezbanYai-ReSER, 1997; DAPPORTO et al., 2002; DAPPORTO \& STRUMIA, in stampa) mentre Coenonympha elbana Staudinger, 1901 è diffusa in varie località della costa, da Rosignano fino all'Argentario (FABIANO et al., 2001). La diffusione di queste specie attraverso il Tirreno potrebbe essere avvenuta grazie a eventi paleogeografici come la crisi di salinità del Messiniano e le variazioni eustatiche del livello del mare durante le glaciazioni, ma più probabilmente la colonizzazione delle isole toscane da parte di specie sardo-corse è avvenuta per dispersione attiva (DAPPORTO et al., 2002). I lepidotteri infatti sono uno dei gruppi animali maggiormente capaci di colonizzare isole per dispersione (BAKER, 1984; BENTON, 1995; Vieira et al., 2003). A conferma di questa ipotesi è stato recentemente dimostrato come nelle isole dell'arcipelago egeo l'incidenza, la rarità e la diversità specifica delle farfalle siano influenzate dalla geografia attuale piuttosto che da fattori storici (Dennis et al., 2000).

La Toscana costituisce il limite settentrionale della distribuzione in Italia di alcune specie meridionali: Melanargia arge (Sulzer, 1776), Parascotia nisseni (Turati, 1905), Spodoptera cilium (Guenée, 1852), Xanthia cypreago (Hampson, 1906), Ammopolia witzenmanni (Standfuss, 1890) (FABIANO et al., 2001; DAPPORTO et al., dati inediti). Sembra che alcune di queste specie si stiano rapidamente diffondendo verso nord (Zilli et al., 2001).

Le aree umide della Toscana sono state poco indagate per quanto riguarda i Lepidotteri, alcune specie sono peculiari di questi ambienti. Fra queste la più notevole è senza dubbio Lycaena dispar (Haworth, 1802) presente in Valdarno a valle di Firerize e in Versilia, Laelia coenosa (Hübner, 1808) si trova in zone umide del litorale toscano (Massaciuccoli, Piombino, Argentario), Apatura ilia (Denis \& Schiffermüller, 1775) è anch'essa presente in zone umide, ma è più propriamente una specie ripariale (BARTOLINi, 1999; FABIANO et al., 2001). Le aree umide retrodunali del Parco della Maremma sono caratterizzate dalla presenza di Phragmataecia castaneae (Hübner, 1790), Rhizedra lutosa (Hübner, 1803), e Chortodes pygmina (Haworth, 1809), mentre nei boschi umidi della tenuta di San Rossore si ritrovano almeno due specie tipiche di questi ambienti: Scopula caricaria (Reutti, 1853) e Mythimna turca (Linnaeus, 1761) (Dapporto \& MAGI, dati inediti). Altre specie legate ad ambienti riparali sono presenti nell'Alto Valdarno (Nonagria typhae (Thunberg, 1784), Phragmatiphila nexa (Hübner, 1808) Simyra albovenosa (Goeze, 1781), Naenia typica (Linnaeus, 1758). Le aree collinari dell'alta Toscana e i monti dell'Appennino in provincia di Firenze e Arezzo non ospitano una fauna peculiare. Qui si ritrovano le specie note per le altre regioni dell'Italia centrale (Prola et al., 1978a, 1978b; ProLa \& RaCheli, 1979, 1980; SCALERCIO, 1999). Vi sono però aree particolarmente interessanti come il Parco Nazionale delle Foreste Casentinesi dove, pur mancando entità strettamente orofile, si ritrova una notevole abbondanza di specie che testimonia un buono stato di conservazione dell'ambiente (DAPPORTO, 1998).

Un'altra area di indubbio interesse è la Valle del Farma situata al confine fra le province di Siena e Grosseto. La morfologia della valle e il suo orientamento da ovest a est determina una marcata differenza di insolazione tra i due versanti. Il versante rivolto a nord è caratterizzato da un bosco mesofilo, mentre quello opposto presenta una vegetazione di tipo mediterraneo termofila e xerofila, non diversa dal territorio circostante. I caratteri di mesofilia sono più accentuati nel fondovalle, in prossimità del torrente, dove si possono trovare, a quote inferiori ai 200 m , piante di faggio e tasso a breve distanza dai lecci e dalle sughere del versante esposto a sud. Il fondovalle costituisce un'area di rifugio per molte specie frigofile di Lepidotteri. Tra queste le più rilevanti sono due Geometridi a gravitazione settentrionale: Archiearis notha (Hübner, 1803) e Stegania cararia (Hübner, 1790) (Fabiano \& Zilli, 1998; Dapporto \& Fabiano, 2000b).

Ulteriori indagini lepidotterologiche in Toscana potrebbero individuare aree di interesse, in particolare dovrebbero essere meglio studiate le zone umide di Fucecchio, Massaciuccoli e lago di Burano, l'appennino nord orientale (Alpe della Luna; Sasso di Simone) dove potrebbero ritrovarsi specie tipiche dell'appennino umbro-marchigiano e le aree montuose della Toscana centro-meridionale (Monte Amiata e Monte Cetona) che, dato il loro isolamento rispetto agli appennini, potrebbero costituire delle isole ecologiche.

Ringraziamenti

Gli autori desiderano ringraziare tutti gli amici e colleghi che col loro lavoro hanno contribuito alla conoscenza dei Lepidotteri toscani. Si ringraziano in particolare: Felice Balderi, Heinrich Biermann, Francesca Magi, Stefania Nappini e Giuseppe Vignali.

Bibliografia

BAKER R. R., 1984. The dilemma: when and how to go or stay (pp. 279-296). In: Vane Wright R. I. \& Ackery P. R. (eds.). The Biology of Butterflies. Academic Press, London.
Bartolini L., 1999. I Lepidotteri Ropaloceri del Padule di Fucecchio e delle Cerbaie (e altro ancora). Stamperia Benedetti, Pescia, pp. 176.
BENTON T.G., 1995. Biodiversity and biogeography of Henderson Island insects. Biological Journal of Linnean Society, 56: 245-259.
Berio E., 1993. Prima nota sui iNoctuidi dell'Isola di Capraia. Rivista del Museo civico di Scienze Naturali "E. Caffi", Bergamo, 16: 153-166.
Bertaccini E., Fiumi G. \& Provera P., 1997. Bombici e Sfingi d’Italia. Vol. 2. Natura, Giuliano Russo Ed., Bologna, pp. 256.
Biermann H., 1990. Beitrag zur Schmetterlingsfauna der Insel Montecristo in Toskanischen Archipel (Lepidoptera). Nachrichten des entomologischen Vereins Apollo, 11: 179-184.
Biermann H. (in stampa). Tabellarische Übersicht über die Tagfalter der tyrrenischen Inseln und des angrenzenden Festiand (1. Nachtrag) (Lepidoptera, Hesperioidea, Papilionidea). Atalanta, 34.
Dapporto L., 1998. I Macrolepidotteri del Parco Nazionale delle Foreste Casentinesi, del Monte Falterona e di Campigna. Tesi di Laurea dell'Università di Firenze.
DAPPORTO L. (in stampa). I Lepidotteri raccolti all'Isola di Gorgona con trappola Malaise nel periodo 1999-2002 (Insecta, Lepidoptera). Frustula Entomologica.
Dapporto L., Balderi F., Biermann H., Fabiano F. \& Nappini S., 2003. New data about Heterocera of Tuscan Archipelago (Insecta, Lepidoptera), Atalanta, 34 (1/2): 135-151.
Dapporto L., Cecchi B., lo Cascio P. \& Sforzi A., 1999 Contributi alla conoscenza dell'artropodofauna dell'Isola di Pianosa (Arcipelago Toscano). 2. Prima nota sui Macrolepidotteri. (Insecta, Lepidoptera). Bollettino della Società entomologica italiana, 131 (3): 245-252.
DAPPORTO L., \& FABIANo F., 2000a. Nuovi reperti di eteroceri in Toscana e in Romagna. Quaderni di Studi e Notizie di Storia Naturale della Romagna, 13: 45-52.
Dapporto L., \& Fabiano F., 2000b. Notes of some interesting Geometridae collected in Tuscany (Italy). Nota lepidopterologica, 23 (2): 185-190.
DAPPORTO L., FABIANO F. \& NAPPINi S., 2002. Segnalazioni di alcuni Lepidotteri rinvenuti nel Parco Naturale della Maremma e considerazioni biogeografiche. Quaderni di Studi e Notizie di Storia Naturale della Romagna, 16 (suppl.): 111-118.
DAPPORTO L. \& STRUMIA F. (in stampa). I Macrolepidotteri raccolti nel Parco Naturale della Maremma con trappole Malaise e scoperta di Eupithecia sardoa Dietze, 1910 nel continente italiano. (Insecta, Lepidoptera). Frustula Entomologica.
Dennis R. L. H., Shreeve T. G., Olivier A., \& Coutsis J. G., 2000. Contemporary geography dominates butterfly gradients within the Aegean archipelago (Lepidoptera: Papilionidea, Hesperioidea). Journal of Biogeography, 27: 1365-1383.

Fabiano F., Vignali G. \& Dapporto L., 2001. Lepidotteri (pp. 293-343). In: Sforzi A. \& BARTOLOZZI L., 2001. Libro Rosso degli insetti della Toscana. ARSIA Regione Toscana, Firenze, pp. 375.
FABIANO F. \& ZIlli A., 1998. Reperti: Archiearis notha (Hübner, [1803]) Lepidoptera, Geometridae. Bollettino dell'Associazione Romana di Entomologia, 53 (1-4): 76.
Flamigni C., Bastia G. \& Dapporto L., 2001. Nuove segnalazioni e note critiche sui Geometridi di Emilia, Romagna e Toscana. I parte. Quaderni di Studi e Notizie di Storia Naturale della Romagna, 14: 89-122.
Marini M. \& Trentini M., 1986. I macrolepidotteri dell'Appennino lucchese. Arti Grafiche Tamari, Bologna, pp. 136.
MÉdail F. \& Quézel P., 1999. Biodiversity Hotspots in the Mediterranean Basin: Setting Global Conservation Priorities. Conservation Biology, 13: 1510-1513.
Prola C, Provera P., Racheli T. \& Sbordoni V., 1978a. I Macrolepidotteri dell’Appennino centrale. Parte 2. Noctuidae. Bollettino dell'Associazione Romana di entomologia, 32 (1-4) (1977): 1-238.
Prola C, Provera P., Racheli T. \& Sbordoni V., 1978b. I Macrolepidotteri dell'Appennino centrale. Parte 1. Diurna, Bombyces e Sphinges. Fragmenta entomologica, 14: 1-217.
Prola C. \& Racheli T., 1979. I Geometridi dell'Italia Centrale. 1. Bollettino dell'Istituto di Entomologia dell' Università di Bologna, 34: 191-246.
Prola C. \& Racheli T., 1980. I Geometridi dell'Italia Centrale. 2. Bollettino dell'Istituto di Entomologia dell' Università di Bologna, 35: 29-108.
Raineri V., 1993. I Lepidotteri Geometridi dell'Isola di Capraia. Rivista del Museo civico di Scienze Naturali "E. Caffi", Bergamo, 16: 143-148.
ReZbANYAI-RESER L., 1997. Herbstliche Lichtfallen- und Tagfänge von GroßSchmetterlingen an drei Orten in Mittelitalien (Marche, Toscana, Lazio) (Lepidoptera: Macrolepidoptera). Entomologische Zeischrift, Essen, 107 (9): 362-390.
SCALERCIO S., 1999. Macrolepidotteri notturni catturati nel Vincese (Toscana - Italia) (Lepidoptera). Memorie della Società entomologica italiana, 77: 311-316.
Vieira V., Pintureau B., Tavares J. \& McNeil J. N., 2003. Differentiation and gene flow among island and mainland populations of the true armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidae). Canadian Journal of Zoology, 81: 1367-1377.
Zilli A., 1994. Remarks on european Myxinia species. Atalanta, 25 (1/2): 359-364.
Zilli A., Maltzeff P., Pinzari M. \& Raineri V., 2001. I lepidotteri della Tenuta Presidenziale di Castelporziano (Lepidoptera). Bollettino dell'Associazione Romana di entomologia, 56 (1-4): 13-48.

Indirizzo degli Autori:

Leonardo Dapporto, Centro Interdipartimentale Museo di Storia, Naturale e del Territorio dell'Università di Pisa, Via Roma 79, I-56011 Calci (PI)
Filippo Fabiano, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze

Fabio Terzani \& Filippo Fabiano

DESCRIZIONE DI DUE AGGRESSIONI DI PARARGE AEGERIA (LINNEO, 1758) CONTRO CALOPTERYX HAEMORRHOIDALIS (VAN DER LINDEN, 1825)

(Lepidoptera Satyridae e Odonata Calopterygidae)

Riassunto. Sono descritti due episodi di aggressione di Pararge aegeria (Linneo, 1758) contro Calopteryx h. haemorrhoidalis (Van der Linden, 1825). Tali aggressioni sono state interpretate come una difesa del territorio della farfalla.

Abstract

Description of two attacks of Pararge aegeria (Linneo, 1758) against Calopteryx h. haemorrhoidalis (Van der Linden, 1825) (Lepidoptera Satyridae, Odonata Calopterygidae). Two attacks of Pararge aegeria (Linneo, 1758) against Calopteryx h. haemorrhoidalis (Van der Linden, 1825) are described. Such attacks are explained as a defence of the territory of the butterfly.

Key words. Pararge aegeria (Linneo, 1758), Calopteryx h. haemorrhoidalis (Van der Linden, 1825), territoriality.

Introduzione

Non avendo conoscenza di citazioni bibliografiche riguardanti aggressioni di Pararge aegeria (Linneo, 1758) ai danni di Calopteryx h. haemorrhoidalis (Van der Linden, 1825) riteniamo utile segnalare i seguenti episodi che seguono, ai quali, tuttavia, uno solo di noi (Terzani) ha assistito. E' per questo motivo che la narrazione dei fatti viene fatta in prima persona.

Le interazioni sono avvenute tra le 13.00 e le 13.30 (ora solare) dell'1.VII. 1999 in Toscana, prov. di Grosseto, a valle di Montieri, lungo il fiume Merse a m 350 ca, in ambiente boscoso, in un tratto del corso d'acqua prevalentemente ombroso.

Non ho assistito fin dall'inizio alla prima aggressione di Pararge aegeria (Linneo, 1758) ai danni di Calopteryx h. haemorrhoidalis (Van der Linden, 1825), ma la farfalla ha attraversato il mio spazio visivo inseguendo per qualche metro la libellula a una distanza di $25-30 \mathrm{~cm}$, sovrastandola in aria, ma senza tentare un contatto fisico. Incuriosito, ho seguito con lo sguardo le vicende dei due insetti che dopo qualche metro si sono divisi. La Pararge, apparentemente soddisfatta del risultato ottenuto, si è posata su una fronda di ontano su cui arrivava un fascio di sole, mentre la Calopteryx, piuttosto inquieta, dopo aver svolazzato un po' qua e là, ha finito per posarsi a pochi $\mathrm{cm}(15-20)$ dalla farfalla. Questa ha reagito con estrema energia ed ha costretto la libellula ad alzarsi in volo e ad allontanarsi, inseguita, per $5-6 \mathrm{~m}$. La Calopteryx si è posata sulla fronda di un altro ontano, ma lì ha dovuto subire l'aggressione ripetuta della Pararge che, in un caso, è
stato così determinata da giungere al contatto fisico. La libellula tuttavia ha resistito ai ripetuti attacchi rifiutando di muoversi ancora, cosicché dopo alcuni tentativi la farfalla ha desistito tornando a posarsi sulla "sua" fronda, dove è rimasta indisturbata almeno per i successivi 20 minuti di osservazione.

Sia Pararge aegeria che Calopteryx h. haemorrhoidalis sono comuni in ambienti boscosi percorsi da acque correnti (TOLMAN, 1997; ASKEW, 1988), ma a noi non era mai accaduto di assistere a interazioni fra queste due specie. In effetti la libellula, pur essendo specie predatrice di dimensioni notevolmente superiori a quelle della farfalla, rifiuta prede di queste dimensioni, né del resto sarebbe probabilmente in grado di catturarla in considerazione della mediocrità del suo volo, certamente non cosi agile e rapido come quello della Pararge. Per altro la farfalla, non ravvisando la libellula come potenziale predatrice, non dovrebbe aver motivo di temerne la presenza.

Tuttavia i maschi di Pararge aegeria sono noti per avere un comportamento spiccatamente territoriale. In particolare essi ricercano e difendono le aree esposte al sole all'interno del bosco (sunspots). I motivi sono due: termoregolazione e incontro del partner.

Il concetto di territorio come area difesa da un individuo (definizione etologica che implica un intento da parte del soggetto) è ben definito da BROWN (1975): "A territory is a fixed area from which intruders are excluded by some combinations of advertisement (e.g. scent, song), threat and attack".

Studi approfonditi sulla difesa del territorio (inteso come sunspot) da parte della Pararge aegeria sono stati condotti da Davies (1978), Wickman \& Wicklund (1983) e Shreeve (1984). In particolare Davies (I. c.) afferma che i maschi che occupano le sunspots hanno maggiori probabilità di accoppiarsi rispetto a quelli che occupano la chioma degli alberi. L'interazione del maschio residente in una sunspot con altri soggetti che vi penetrano avviene in modo diverso. Se si tratta di maschi conspecifici viene messo in atto il cosiddetto "spiral flight" che si risolve con la fuga dell'invasore, mentre se si tratta di una femmina essa viene seguita dal maschio che inizia il corteggiamento. Nel caso che l'intruso sia un'altra specie di farfalla o un altro insetto (grossi ditteri, coccinellidi, vespe) questo autore ha constatato che esso viene identificato, ma successivamente ignorato in quanto probabilmente non considerato competitivo. Nel nostro caso, evidentemente, la Calopteryx ha superato il limite territoriale entro il quale la sua vicinanza non è stata tollerata e ha spinto la Pararge a reagire con estremo vigore.

Bibliografia

Askew R. R., 1988. The Dragonflies of Europe. Harley Books, Colchester, pp. 291.
Brown J. L., 1975. The Evolution of Behavior. Norton, New York, pp. 761.
DAVIES N. B., 1978b. Territorial defence in the speckled wood butterfly (Pararge aegeria): the resident always wins. Animal Behaviour, 26: 138-147.
Shreeve T. G., 1984. Habitat selection, mate location, and microclimatic constraints on the activity of the speckled wood butterfly Pararge aegeria. Oikos, 42: 371-377.
Tolman T., 1997. Butterflies of Britain \& Europe. Harper Collins, London, pp. 320.

Wickman P.-O. \& Wicklund C., 1983. Territorial defence and its seasonal decline in the speckled wood butterfly (Pararge aegeria). Animal Behaviour, 31: 1206-1216.

Indirizzo degli Autori:
Fabio Terzani, Museo di Storia Naturale dell’Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17 , I-50125 Firenze e-mail tterza@tin.it
Filippo Fabiano, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze

Italo Berdondini

ARANEISMO: IL VELENO DEI RAGNI E I SUOI EFFETTI SULL'UOMO

Abstract

Riassunto. Si definisce "araneismo" qualunque disturbo o quadro clinico provocato nell'uomo dal veleno dei ragni. Tale veleno è costituito da miscele di sostanze tossiche, la cui azione può essere o prevalentemente neurotossica [come ad esempio in Latrodectus tredecimguttatus (Rossi, 1790) versione mediterranea della più famosa "vedova nera", della Famiglia dei Theridiidae] oppure necrotizzante-citotossica [come in Loxosceles rufescens (Dufour, 1820) della famiglia dei Sicariidae]. Le specie presenti in Italia ben raramente possono provocare, nell'uomo, quadri clinici di una certa rilevanza, a meno che non vengano colpiti soggetti particolarmente sensibili o debilitati. Va, comunque, tenuta presente la possibilità che esemplari di specie più aggressive possano casualmente pervenire nel nostro paese, a causa dei frequenti scambi internazionali di bagagli e merci.

Abstract

Araneism: the poison of the spiders and its consequences on the man. The condition produced by the bite of a spider is called araneism. The poison of a mixture of toxic substances, whose effect can be mainly neurotoxic [as in Latrodectus tredecimguttatus (Rossi, 1790) the Mediterranean version of the more famous "black widow" of the family Theridiidae] or else necro-cytotoxic [as in Loxosceles rufescens (Dufour, 1820) of the family Sicariidae]. The species present in Italy rarely cause any great harm to man, unless the victim is particularly vulnerable due to other physical factors. It is nonetheless possible that more aggressive species can accidentally find their way to Italy thanks to global travel and commerce.

Key words. Araneism.

Introduzione

Tutti i ragni (eccetto le specie appartenenti alla famiglia degli Uloboridae) sono provvisti di ghiandole velenifere e, col loro morso, possono determinare fenomeni patologici che vanno sotto il nome di "araneismo". Tuttavia solo in pochi casi essi costituiscono un pericolo per l'uomo: si calcola che meno di 50 specie (su oltre 35.000 conosciute) sono in grado di provocare sindromi clinicamente significative (Foelix, 1996), mentre ulteriori 2 300 possono causare effetti locali non molto più importanti di una puntura di vespa . In generale, i danni provocati da ragni ad esseri umani sono numericamente assai meno frequenti di quelli dovuti a vespe, api o calabroni.

Abitualmente i ragni, se minacciati, tendono a fuggire ma si conoscono alcune eccezioni: ne è un esempio Atrax robustus (Cambridge, 1877), ragno australiano appartenente alla famiglia degli Hexathelidae, il cui maschio è estremamente aggressivo e attacca furiosamente tutto quello che vede muoversi. I suoi cheliceri possono perforare l'unghia
di un dito umano: una volta che esse siano conficcate, risulta difficile estrarle. La ferita è dolorosa, sia per la profondità sia per il pH acido del veleno. Si sviluppano effetti sistemici generalizzati, fino al coma, con vomito, spasmi muscolari, edema polmonare, paralisi dei centri respiratori ed arresto cardiaco: si conoscono almeno una dozzina di casi mortali provocati da A. robustus.

Ugualmente aggressive sono alcune specie appartenenti alla famiglia degli Ctenidae, ragni presenti in vari paesi tropicali (Africa, America meridionale, ecc.) e dotati di un veleno assai potente.

Nei ragni, il veleno viene prodotto da un paio di ghiandole specializzate, originate dall'ectoderma e situate nel cefalotorace. Ogni ghiandola è costituita da una parte allungata, cilindrica e da un dotto che termina all'apice dell'estremità dei cheliceri. Un robusto strato di muscoli striati, avvolge a spirale il corpo delle ghiandole: contraendosi, esso serve ad espellere velocemente il veleno ed è dotato di innervazione propria. Anche I'epitelio ghiandolare ha una propria innervazione, verosimilmente per regolare, o stimolare, la produzione di veleno (Foelix, 1996).

Nei ragni più primitivi (Ortognati o Migalomorfi) queste ghiandole sono piuttosto piccole e sono sistemate all'interno dei cheliceri. Nella gran parte dei ragni più comuni e diffusi (Labidognati o Araneomorfi) esse sono relativamente grandi e possono estendersi ben all'interno del cefalotorace: in qualche caso estremo (ad esempio nel genere Filistata) addirittura suddivise in lobuli.

La più strana specializzazione delle ghiandole velenifere si trova nel genere Scitodes, nel quale sono costituite da una parte anteriore, che produce veleno, e una posteriore che produce una sostanza collosa. Il ragno proietta tali prodotti, miscelati, sulla preda che così si trova immobilizzata contro il suolo, ancor prima di subire l'azione del veleno.

I veleni dei ragni sono miscele complesse contenenti proteine e polipeptidi di vario peso molecolare, amine biogene, enzimi proteolitici, aminoacidi, ecc. Il loro effetto può essere prevalentemente neurotossico, oppure citotossico-necrotizzante 0 , più genericamente, misto. Come nel caso di altri veleni e tossine, il loro potere può essere quantificato mediante la determinazione della DL50 (Dose Letale al 50\%), cioè la capacità di uccidere il 50% degli animali inoculati sperimentalmente. Si può cosi vedere che diverse specie animali sono differentemente sensibili al veleno di varie specie di ragni.

Gli effetti del veleno possono rimanere localizzati oppure interessare larga parte del corpo, per un tempo variabile, in relazione alla quantità inoculata, alla velocità di assorbimento, al metabolismo e all'eliminazione delle componenti tossiche. Esempio tipico, ma certamente non unico, di ragni con veleno neurotossico sono le cosiddette "vedove nere", di cui esistono varietà locali nei vari continenti. Essi appartengono al genere Latrodectus, della famiglia dei Theridiidae. Particolarmente nota è la varietà americana Latrodectus mactans (Fabricius, 1775) ma tutte le specie di questo genere sono pericolose: si parla, infatti di "latrodectismo" per identificare il fenomeno, riscontrabile in molti regioni. Nei paesi mediterranei è presente Latrodectus tredecimguttatus (Rossi, 1790), ragno di dimensioni medie: la femmina può arrivare a $1,5 \mathrm{~cm}$. ed è di colore nero con tre file di macchie rosso vivo sulla superficie dorsale dell'addome (Fig. 1).

Fig. 1: Femmina di Latrodectus tredecimguttatus (Rossi) in vista dorsale.
(Foto: M. Trentini)
In talune varietà, queste macchie possono non essere presenti, ma in tutti i casi una striscia, ugualmente rosso vivo, è sempre riscontrabile sulla superficie ventrale, fra epigastrio e filiere, ed è fondamentale per la identificazione. Il maschio ha dimensioni minori, abitualmente non ha le macchie rosse sul dorso e non morde. Tale specie è conosciuta in Italia con il nome popolare di "malmignatta" ed è meno pericolosa della varietà americana.

II "morso", di per sé, può non essere molto doloroso e, talora, può passare quasi inosservato. Il dolore, reale, compare entro un'ora, con inizio dalle linfoghiandole regionali, dalle quali si diffonde ai muscoli, che si presentano fortemente contratti, specialmente a livello addominale (segno caratteristico, che può simulare un attacco di "addome acuto"). Si manifesta pure una particolare "facies"; con volto arrossato a coperto di sudore, palpebre gonfie con lacrimazione, labbra arrossate e masseteri contratti (facies latrodectismica). Se i muscoli respiratori vengono coinvolti, questo può portare alla morte. Apparentemente la tossina è in grado di agire a livello delle sinapsi del sistema nervoso centrale oltre che a livello di quelle neuro-muscolari, con deplezione totale delle vescicole e paralisi dei sistemi simpatico e parasimpatico. E' presente uno spiccato stato ansioso, con senso di morte imminente. L'interessamento del sistema muscolare, con rabdomiolisi, provoca un netto aumento dell'enzima ematico creatinfosfochinasi (CPK).

Al veleno risultano assai sensibili gatti, cavalli, ecc. In assenza di trattamento specifico, nell'uomo i sintomi si protraggono per almeno 5 giorni e la guarigione completa può tardare alcune settimane: in tali condizioni la mortalità, negli Stati Uniti, in passato si aggirava sul 5%. Attualmente si applica una terapia a base, tra l'altro, di calcio gluconato
e siero anti-latrodectus endovena. Il calcio fa scomparire in tempi brevissimi la contrazione e il dolore muscolare, il siero specifico blocca il veleno.

Esempio di ragni con veleno necrotizzante è, invece, il genere Loxosceles, della famiglia dei Sicariidae. Anche in questo caso ci sono taxa locali, con piccole differenze, non solo morfologiche, rispetto ad un modello comune: così, ad esempio, troviamo negli Stati Uniti la specie Loxosceles reclusa Gertsch \& Mulaich, 1940 e, nei paesi mediterranei, Loxosceles rufescens (Dufour, 1820), la cui pericolosità, come nel caso di Latrodectus, è di gran lunga meno importante rispetto alla specie americana. Si tratta di ragni non appariscenti, di dimensioni piccole o medie, colore grigio o giallastro pallido, con addome leggermente più scuro, muniti di soli sei occhi, apparato genitale semplice, atteggiamento delle zampe, a riposo, modicamente laterogrado ("a granchio"). (Fig. 2).

Spesso gli esemplari di Loxosceles vivono nelle abitazioni dell'uomo o nelle immediate vicinanze, in ambienti non illuminati e tranquilli: possono nascondersi dentro alcuni mobili, tra la biancheria e i vestiti. Molte vittime vengono punte mentre dormono o si stanno vestendo.

Fig. 2: Maschio di Loxosceles rufescens (Dufour). (Foto I. Berdondini)
Quando le lesioni sono provocate da ragni di questo Genere, si parla di "loxoscelismo", quadro che per frequenza e gravità si avvicina, almeno negli Stati Uniti, a quello provocato da Latrodectus. Tuttavia alcuni autori chiamano in causa vari altri fattori quali responsabili di gran parte delle sintomatologie attribuite a ragni con veleno necrotizzante e, quindi, anche a Loxosceles: ad esempio, nel caso di Lampona cilindrata L. Koch, 1866, ragno assai comune in Australia, la necrosi provocata dal suo morso sarebbe dovuta prevalentemente a micobatteri che infettano la sua regione buccale.

Il veleno citotossico contiene proteine ad alto peso molecolare, con attività enzimatica di varia natura, ed è simile a quello di alcuni serpenti (es. vipere). Vi sono due forme di loxoscelismo: - una cutanea, più frequente, ma non pericolosa per la vita, in cui localmente compaiono bolle e vescicole che evolvono in ulcere torpide e necrosi dei tessuti circostanti, ad opera, principalmente, di una sfingomielinasi; proprio quest'ultima sembra essere la causa delia necrosi, particolarmente grave, a carico del tessuto
adiposo; una seconda forma viscero-cutanea, talora mortale, caratterizzata da febbre, coagulopatia e spiccata emolisi con emoglobinuria e conseguente danno renale. Non esistono antidoti specifici e la terapia si limita alla somministrazione di sintomatici, al monitoraggio della coagulazione, al controllo e pulizia della ferita, oltre a profilassi antitetanica.

In Italia, i casi di araneismo sono relativamente rari e in genere meno gravi di quanto riportato in altri paesi: il centro anti-veleni di Milano, che tratta in media il 70% degli episodi nazionali di avvelenamento, intossicazione e simili, nel corso di 5 anni ha avuto in osservazione 314 casi clinici provocati da "morso" di ragno, accertato o sospetto. Tra questi, la "malmignatta" era responsabile di 7 episodi, tre dei quali hanno richiesto ricovero ospedaliero e trattamento specifico. In tutti gli altri casi è stata sufficiente una terapia locale sintomatica, somministrata ambulatoriamente (PANNACCIULLI et al. 2002). Inoltre, almeno 4 casi di loxoscelismo cutaneo sono stati riportati, recentemente, in Italia (HANSEN, 1996). Altri episodi, sporadici, di lesioni inferte da ragni, più o meno sicuramente accertati, risultano descritti nella letteratura del nostro paese (Trentini, 2002; Colonna et al., 2002; PePE, 2002).

Non si può, tuttavia, accennare alla epidemiologia italiana dell'araneismo, senza ricordare il complesso quadro del "tarantismo", noto da molti secoli, descritto in modo dettagliato da G. Baglivi (un medico vissuto nella seconda metà del 1600) e tuttora presente, almeno in tracce, nelle credenze e superstizioni di alcune regioni italiane. Si riteneva che il morso di un ragno, poi identificato in una specie del genere Lycosa (famiglia Lycosidae), provocasse disturbi gravi che potevano essere superati soltanto con danze prolungate e frenetiche. Il ragno stesso venne poi denominato Lycosa tarentula L., 1758 in relazione alla regione, o meglio alla città, in cui il fenomeno aveva avuto origine e sviluppo. Ovviamente, attorno a questa convinzione venne via via costruito un insieme di ritualità e mitologie con profondi riflessi etnologici e magici (PENNUTO, 2002).

Oggi si ammette che L. tarentula sia innocente, o quasi; molto verosimilmente, alla base del fenomeno ci furono casi di araneismo di varia gravità, provocati a volte dalla malmignatta, in altri casi dalla suddetta Lycosa o da altri ragni (ma non solo); ben presto componenti di autosuggestione, di vero e proprio isterismo, ecc. si inserirono e complicarono il quadro generale. Resta il fatto che per molti secoli il "tarantismo" è stato ritenuto una realtà concreta nel nostro paese anche se di esso, al presente, rimane pressoché nulla dal punto di vista scientifico.

A parte i casi, già accennati, di latrodectismo e di loxoscelismo, gli episodi di più generico araneismo che sporadicamente vengono riportati nella letteratura medica italiana rivestono in genere una importanza clinica molto modesta. Essi possono essere riferiti a poche altre specie, le quali, per le dimensioni del corpo e per la robustezza dei cheliceri sono effettivamente in grado di infliggere ferite dolorose con fenomeni, soprattutto locali, di lieve o media gravità. Si ricorderanno, fra le più comuni, le specie appartenenti ai generi Dysdera, Segestria, Cheiracanthium, Steatoda, pur tenendo presente che, in condizioni particolari, qualunque ragno può reagire usando i propri mezzi di offesa $e_{\text {, }}$ soprattutto, che con la moderna facilità di scambi commerciali e turistici con paesi tropicali è sempre possibile l'arrivo, se non l'insediamento, di specie non autoctone.

Bibliografia

Colonna S. S. \& Garofano M., 2002. Sindrome rabdomiolitica da morso di ragno. In: "Tarante" veleni e guarigioni. Atti del Convegno interdisciplinare. Lecce, 31 ottobre 2000. Ideemultimediali ed., pp. 89-93.

Foelix R. F., 1996. Biology of Spiders. 2° edition. Oxford University Press.
HANSEN H., 1996. L'importanza medica di alcuni ragni viventi negli ambienti urbani di Venezia. Bollettino del Museo civico di Storia naturale di Venezia, 45: 21-32.
Pannaciulli E., Sesana F., Pirina A. \& Faraoni L., 2002. I ragni e i loro veleni. Casistica del Centro Antiveleni di Milano. In: "Tarante" veleni e guariginni. Atti del Convegno interdisciplinare. Lecce, 31 ottobre 2000. Ideemultimediali ed., pp. 63-78.
Pennuto C., 2002. Casi di tarantati studiati dal Baglivi nel '600. In: "Tarante" veleni e guarigioni. Atti del Convegno interdisciplinare. Lecce, 31 ottobre 2000. Ideemultimediali ed., pp. 15-39.
PEPE R., 2002. Salento "terra di tarante": tra credenze popolari e realtà scientifiche. In: "Tarante" veleni e guarigioni. Atti del Convegno interdisciplinare. Lecce, 31 ottobre 2000. Ideemultimediali ed., pp. 95-112.

Trentini M., 2002. Ragni velenosi del Salento: Cheiracanthium, Latrodectus, Loxosceles e Lycosa. In: "Tarante" veleni e guarigioni. Atti del Convegno interdisciplinare. Lecce, 31 ottobre 2000. Ideemultimediali ed., pp. 79-88.

Indirizzo dell'autore: Italo Berdondini, Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, I-50125 Firenze

Piccoli annunci

- Un socio regala al primo richiedente le ultime 15 annate della Società Entomologica Italiana rivolgersi al Museo Zoologico "La Specola" dell'Università di Firenze (055-2288269)
- Sono stati pubblicati di recente i seguenti volumi:

Bordoni A., 2002. Xantholinini della Regione Orientale (Coleoptera: Staphylinidae). Classificazione, filogenesi e revisione tassonomica. - Monogr. Mus. reg. Sci. nat., Torino, 33, 998 pp. (60 Euro)

Sforzi A., Bartolozzi L., 2004. Brentidae of the world (Coleoptera, Curculionoidea). Monogr. Mus. reg. Sci. nat., Torino, 39, 976 pp. (50 Euro)

Bartolozzi L. \& Werner K., 2004. Illustrated catalogue of the Lucanidae from Africa and Madagascar. - Taita Publishers, Hradec Kralove, Czech Republic, 192 pp. (130 Euro)

I due volumi editi dal Museo di Torino possono essere ordinati direttamente a tale Museo (e-mail: Biblioteca.mrsn@regione.piemonte.it); mentre il volume edito nella Repubblica Ceka può essere richiesto all'Editore (e-mail: taita@taitapublishers.cz).

- dal 9 al 31 Ottobre, presso il Circolo ARCI/Casa del Popolo di San Donnino (FI), via Pistoiese 185, si terrà una Mostra entomologica e etnografica dal titolo "Papua: natura e umanità", curata dal socio Alessandro Pappalardo. La Mostra (con ingresso gratuito) sarà visitabile dal lunedì al venerdì con orario 17,00-19,00 e 21,00-23,00 e il sabato e i festivi con orario 10,00-12,00 e 17,00-20,00. In occasione della Mostra si terranno alcune conferenze:
giovedì 14 Ottobre, ore 21,00 - "Collezionar Viaggiando" - a cura di Luca Bartolozzi
venerdì 22 Ottobre, ore 21,00 - "Neolitismo oggi" - a cura di Alessandro Pappalardo e Glauco Baldassarri
giovedi 28 Ottobre, ore 21,00-"I diritti del Popolo Papua" - a cura di Egidio Grande

Gli Autori, nel testo e in bibliografia, devono essere scritti in Maluscoletto, seguiti dall'anno di pubblicazione. Nel testo i riferimenti bibliografici vanno riportati come segue: BORDONI (1998); BORDONI (1998; 1998a); BORDONI \& ROCCHI (2000); nel caso di 3 o più autori va indicato il primo autore seguito da "et al." e dall'anno. I nomi di genere e specie vanno scritti in corsivo, come anche le testate delle riviste (scritte per esteso) e l'edizione dei libri. I numeri devono essere scritti tuttl in arabo. Eventuall ringraziamenti verranno posti al termine del lavoro, subito prima della bibliografia. Le citazioni bibliografiche dovranno essere riportate in ordine alfabetico come segue:
Per le riviste: cognome e iniziale del nome dell' Autore (in caso di più Autori si mantiene questo schema, ma il penultimo e l'ultimo autore sono uniti da una \& , anno di pubblicazione, rivista, eventuaimente la località di edizione, il numero del volume, del fascicolo e delle pagine del lavoro di riferimento. Se l'anno di pubblicazione non coincide con l'anno di riferimento del volume, quest'ultimo va posto fra parentesi dopo il numero del volume.

Esempl:

Magrini P,, 2003. Cinque nuove specie di Typhloreichela della Sardegna (Coleoptera Carabidae). Bollettino della Società entomologica italiana, 135 (3): 129-152.
BORDONI A., MAGRINI P. \& CIROCCHI F., 2003. Lathroblum montiscuccoi n. sp. dell'Umbria (Coleoptera Staphylinidae). Bollettino della Società entomologica italiana, 135 (3): 173-176.
ASKEW, R. R., 1988. The Dragonflies of Europe. Harley Books, Colchester \{England), pp. 291.
LO CASCIO P., 2001. Melyridae. In: SFORzi A. \& Bartolozzi L., 2001 - Libro Rosso degli insetti della Toscana. ARSIA, Regione Toscana, Firenze, pp. 215-217.

Ogni lavoro va fatto pervenire alla segreteria di redazione su copia cartacea e floppy disk. La redazione potrà avvalersi di Referees prima di accettare I lavori e si riserva il diritto di chiedere agli Autori, oltre al rispetto delle norme redazionali, eventuali modifiche al testo. La non accettazione dei lavori sarà debitamente motivata. I lavori presentati dai soci avranno precedenza su quelli dei non soci e comunque avranno precedenza i lavori relativi alla Toscana e I'Italia Centrale. Le bozze saranno inviate agli Autori che saranno tenuti a restituirle nel tempo indicato dalla Redazione e con esse dovranno essere indicati il numero di estratti richiesti. II ritardo della restituzione potrebbe comportare anche un rinvio della pubblicazione. Gli Autori sono responsabili dei contenuti dei loro scritti.

Indice

Terzani F., Odonati del Molise (Italia Meridionale): nuovi dati (Odonata) 1
Rocchi S., Il genere Hydrochus Leach, 1817 e annotazioni riguardanti principalmente alcune specie della toscana (Coleoptera Hydrochidae) 8
Bordoni A., Vulda (Typhlodes) holdhausi Bernhauer, 1908, endemita Toscano (Coleoptera, Staphylinidae) 14
Mascagni A., Georissidae della Toscana (Coleoptera) 18
Dapporto L. \& Fabiano F., Caratteri generali della lepidotterofauna toscana (Lepidoptera) 28
Terzani F. \& Fabiano F., Descrizione di due aggressioni di Pararge aegeria (Linneo, 1758) contro Calopteryx haemorrhoidalis (Van der Linden, 1825) (Lepidoptera Satyridae e Odonata Calopterygidae) 33
Berdondini L., Araneismo: il veleno del ragni e i suoi effetti sull'uomo 36

